This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come.
ARTICLE HISTORY
ABSTRACT:In order to investigate the behaviour of climatic and hydrological variables, several statistical and stochastic techniques are currently applied to time series. In the present study a statistical analysis of annual and seasonal precipitation has been performed over 109 cumulated rainfall series with more than 50 years of data observed in a region of Southern Italy (Calabria). Trend analyses have been made by using both nonparametric (Mann-Kendall test) and parametric (linear regression analysis) procedures. The long historical series of monthly rainfall data employed in this work have been previously processed through a pre-whitening (PW) technique in order to reduce the autocorrelation of rainfall series and its effects on outcomes of trend detection. The application of the above mentioned procedures has shown a decreasing trend for annual and winter-autumn rainfall and an increasing trend for summer precipitation. Moreover the Mann-Whitney test has been used to evidence the possible change points in the data. The higher percentages of rainfall series show possible year changes during decade [1960][1961][1962][1963][1964][1965][1966][1967][1968][1969][1970] for almost all of the temporal aggregation rainfall.
Abstract. This study investigates precipitation variability in five regions of Southern Italy (Campania, Apulia, Basilicata, Calabria and Sicily) using a homogeneous database of about 70 rain gauges with more than 50 years of observation. First, a statistical analysis was performed through the MannKendall non-parametric test in order to determine rainfall the trend on both yearly and seasonal scales. Then, the relationship between the rainfall and some teleconnection pattern indexes was investigated using Spearman's test. The results show remarkable statistically significant negative trends for annual and winter aggregations in most part of the series. Moreover, a strong correlation has emerged between the teleconnection patterns and precipitation in Southern Italy, particularly in winter and on the Tyrrhenian side of the study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.