Continuous-flow processing has become one of the fastest-growing research areas in chemistry in the last 10 years. Herein we disclose an automated and scalable continuous-flow route for the quick introduction of trifluoromethyl groups on a variety of heterocycles, with application in drug discovery and manufacturing. This involves the direct alkylation-cyclization of amines in the presence of trifluoroacetic acid or anhydride, cheap and readily available CF 3 -containing building blocks. Compared to traditional batch reactions involving an intermediate purification step, the continuous-flow reactions occurred quickly and at mild conditions, with high yield and broad functional-group tolerance. The practical utility of the method was demonstrated by a gram-scale synthesis and by the estimation of modern green metrics.
Poly(lactic acid) (PLA) is a promising biodegradable polymer based on renewable resources. This paper describes scale-up studies to synthesize high molecular weight PLA (>100'000 g/mol) in five steps from commercial lactic acid. The first four steps of this process consist of synthesizing
a highly pure precursor, lactide, which can be converted into a high molecular PLA by ring opening polymerization (ROP). We produced PLA with a molecular weight of 109'000 g/mol using this strategy.
A novel and convenient one-pot sequential cascade method for the preparation of 2-trifluoromethylquinazolin-4(3 H)-ones is described. Trifluoroacetic acid (TFA) was employed as inexpensive and readily available CF source, which in the presence of T3P was condensed with a variety of anthranilic acids and amines to provide the products in up to 75% yield. The protocol was proved to be robust on 80 g scale, and the synthetic versatility of the prepared quinazolinon-4-ones was demonstrated by derivatization to further useful building blocks.
Looking at energy harvesting using body or waste heat for portable electronic or on-board devices, Ionic liquids are interesting candidates as thermoactive materials in thermoelectric generators (TEGs) because of their outstanding properties. Two different kinds of ionic liquid, with alkylammonium and choline as cations, were studied, whereby different anions and redox couples were combined. This study focussed on the intention to find non-hazardous and environmentally friendly ionic liquids for TEGs to be selected among the thousands that can potentially be used. Seebeck coefficients (SEs) as high as À 15 mV/K were measured, in a particular case for an electrode temperature difference of 20 K. The bottleneck of our TEG device is still the abundance of negative SE liquids matching the internal resistance with the existing positive SE-liquids at series connections. In this paper, we show further progress in finding increased negative SE liquids. For current extraction from the TEG, the ionic liquid must be blended with a redox couple, allowing carrier exchange in a cyclic process under a voltage which is incuced by the asymmetry of the generator in terms of hot and cold electrodes. In our study, two types of redox pairs were tested. It was observed that a high SE of an ionic liquid/redox blend is not a sufficient condition for high power output. It appears that more complex effects between the ionic liquid and the electrode determine the magnitude of the final current/power output. The physico-chemical understanding of such a TEG cell is not yet available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.