Electromigration tests at temperatures between 340 and 400 °C and current densities between 1.0 and 3.0 MA/cm2 have been performed to determine the temperature dependence of the critical length effect in 0.5-μm-wide Cu/oxide dual-damascene interconnects with 0.1 μm silicon nitride (SiNx) passivation. A focused-ion-beam-induced contrast imaging technique is used to locate failure sites of critical length test structures. Statistical analysis [E. T. Ogawa et al., Appl. Phys. Lett. 78, 18 (2001)] yields a threshold-length product (jL)c, of 3700 A/cm, and a temperature dependence is not observed within the temperature range 340–400 °C.
Electromigration results have provided clear evidence of a short or “Blech” length effect in dual- damascene, Cu/oxide, multilinked interconnects. The test structure incorporates a repeated chain of Blech-type line elements and is amenable to failure analysis tools such as focused ion beam imaging. This large interconnect ensemble provides a statistical representation of electromigrationinduced damage in the regime where steady-state interconnect stress is manifest. Statistical analysis yields a critical length of 90 μm for interconnects with line width 0.5 μm at j=1.0×106 A/cm2 and T=325 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.