A principle for creating a new generation of nonionic superbases is presented. It is based on attachment of tetraalkylguanidino, 1,3-dimethylimidazolidine-2-imino, or bis(tetraalkylguanidino)carbimino groups to the phosphorus atom of the iminophosphorane group using tetramethylguanidine or easily available 1,3-dimethylimidazolidine-2-imine. Seven new nonionic superbasic phosphazene bases, tetramethylguanidino-substituted at the P atom, have been synthesized. Their base strengths are established in tetrahydrofuran (THF) solution by means of spectrophotometric titration and compared with those of eight reference superbases designed specially for this study, P2- and P4-iminophosphoranes. The gas-phase basicities of several guanidino- and N',N',N'',N''-tetramethylguanidino (tmg)-substituted phosphazenes and their cyclic analogues are calculated, and the crystal structures of (tmg)3P=N-t-Bu and (tmg)3P=N-t-Bu x HBF4 are determined. The enormous basicity-increasing effect of this principle is experimentally verified for the tetramethylguanidino groups in the THF medium: the basicity increase when moving from (dma)3P=N-t-Bu (pKalpha = 18.9) to (tmg)3P=N-t-Bu (pKalpha = 29.1) is 10 orders of magnitude. A significantly larger basicity increase (up to 20 powers of 10) is expected (based on the high-level density functional theory calculations) to accompany the similar gas-phase transfer between the (dma)3P=NH and (tmg)3P=NH bases. Far stronger basicities still are expected when, in the latter two compounds, all three dimethylamino (or tetramethylguanidino) fragments are replaced by methylated triguanide fragments, (tmg)2C=N-. The gas-phase basicity (around 300-310 kcal/mol) of the resulting base, [(tmg)2C=N-]3P=NH, having only one phosphorus atom, is predicted to exceed the basicity of (dma)3P=NH by more than 40 powers of 10 and to surpass also the basicity of the widely used commercial [(dma)3P=N]3P=N-t-Bu (t-BuP4) superbase.
The reaction of 2,3‐diaminomaleonitrile with TeX4 (X = Cl, Br) in the presence of pyridine (Py) and/or triethylamine (Et3N) provided 3,4‐dicyano‐1,2,5‐telluradiazole (1), which was isolated neat and as stable adducts with pyridine, chloride, and bromide, namely, 1·2Py, (PyH)(1·Cl), (PyH)2(1·2Cl), (Et3NH)(1·Cl), (PyH)(1·Br), and (PyH)2(1·2Br). The molecular and supramolecular structures of these compounds were investigated by X‐ray crystallography. In the solid state, intermolecular associations through secondary Te···N interactions as well as N–H···X and N–H···N hydrogen bonding (X = Cl, Br) were observed. For (PyH)(1·Br), two polymorphs were found. The bonding situation of 1 and its pyridine and chloride adducts were investigated by MP2 calculations supplemented with the quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses. The π symmetry of the frontier molecular orbitals (MOs) of 1 are preserved in the 1·2Py, (1·Cl–), and (1·2Cl–) adducts. In the chloride adducts, the highest occupied molecular orbital (HOMO) can be described as an antibonding combination of the HOMO of 1 with the 3p atomic orbitals (AOs) of the chloride ions, whereas the lowest occupied molecular orbital (LUMO) resembles that of the parent 1. The charge transfer onto the heterocycle in the adducts increases in the order 1·2Py, (1·2Cl–), and (1·Cl–). QTAIM analyses of the adducts in the gas phase reveal closed‐shell interactions, whereas NBO analyses indicate negative hyperconjugation as the main formation pathway in these complexes. This description agrees with the Alcock model suggested for secondary bonding interactions between atoms of heavy p‐block elements and atoms with lone pairs.
New products of coordination of anions X– (X = F, I, PhS) to the Te atom of 3,4-dicyano-1,2,5-telluradiazole (1) were synthesized in high yields and characterized by X-ray diffraction (XRD) as the salts [(Me2N)3S]+[1-F]− (9), [K(18-crown-6)]+[1-I]− (10), and [K(18-crown-6)]+[1-SPh]− ·THF (11), respectively. In the crystal lattice of 10, I atoms are bridging between two Te atoms. The bonding situation in anions of the salts 9–11 and some other adducts of 1,2,5-chalcogenadiazoles (chalcogen = S, Se, Te) and anions X– (X = F, Cl, Br, I, PhS) was studied using DFT, QTAIM, and NBO calculations, for 9–11 in combination with UV–vis, IR/Raman, and MS-ESI techniques. In all cases, the nature of the coordinate bond is negative hyperconjugation involving the transfer of electron density from X– to the heterocycles. The energy of the bonding interaction varies in a range from ∼30 kcal mol–1 comparable with energies of weak chemical bonds (e.g., internal N–N bond in organic azides) to ∼86 kcal mol –1 comparable with an energy of the C–C covalent bonds. The thermodynamics of the anions’ coordination to 1 and their Se and S congeners was also studied by quantum chemical calculations. The general character of this reaction and favorable thermodynamics in the case of heavier chalcogens (Se, Te) were established. Comparison with available data on acyclic analogues, i.e. the chalcogen diimines RNXNR, reveals that they also coordinate various anions but in addition reactions across XN (X = S, Se, Te) double bonds. Attempts to prepare the anion [1-TePh]− led to disintegration of 1. The only unambiguously identified product was a rather rare tellurocyanate that was characterized by XRD and elemental analysis as the salt [K(18-crown-6)]+[TeCN]− (13).
R2BiOH (1) [R = 2-(Me2NCH2)C6H4] and (R2Bi)2O (2) are formed by hydrolysis of R2BiCl with KOH. Single crystals of were obtained by air oxidation of (R2Bi)2. The reaction of R2BiCl and Na2CO3 leads to (R2Bi)2CO3 (3). 3 is also formed by the absorption of CO2 from the air in solutions of 1 or 2 in diethyl ether or toluene. (R2Bi)2S (4) is obtained from R2BiCl and Na2S or from (R2Bi)2 and S8. Exchange reactions between R2BiCl and KBr or NaI give R2BiX [X = Br (5), I (6)]. The reaction of RBiCl2 (7) with Na2S and [W(CO)5(THF)] gives cyclo-(RBiS)2[W(CO)5]2 (8). cyclo-(R'BiS)2 (9) [R' = 2,6-(Me2NCH2)2C6H3] is formed by reaction of R'BiCl2 and Na2S. The structures of were determined by single-crystal X-ray diffraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.