The recent emergence and re-emergence of viral infections transmitted by vectors—Zika, chikungunya, dengue, Japanese encephalitis, West Nile, yellow fever and others—is a cause for international concern. Using as examples Zika, chikungunya and dengue, we summarise current knowledge on characteristics of the viruses and their transmission, clinical features, laboratory diagnosis, burden, history, possible causes of the spread and the expectation for future epidemics. Arboviruses are transmitted by mosquitoes, are of difficult diagnosis, can have surprising clinical complications and cause severe burden. The current situation is complex, because there is no vaccine for Zika and chikungunya and no specific treatment for the three arboviruses. Vector control is the only comprehensive solution available now and this remains a challenge because up to now this has not been very effective. Until we develop new technologies of control mosquito populations, the globalised and urbanised world we live in will remain vulnerable to the threat of successive arbovirus epidemics.
On February 1, 2016, The World Health Organization declared the ongoing Zika crisis an emergency and that, although not yet scientifically proven, the link between the virus and growing numbers of microcephaly cases was "strongly suspected." However, the causal relationship between zika and microcephaly is not universally accepted. Public Health Implications. The current situation with regard to Zika is not encouraging, because there is no vaccine, no treatment, and no good serological test, and vector control remains a challenge.
There is considerable interest in the waning of effectiveness of coronavirus disease 2019 (COVID-19) vaccines and vaccine effectiveness (VE) of booster doses. Using linked national Brazilian databases, we undertook a test-negative design study involving almost 14 million people (~16 million tests) to estimate VE of CoronaVac over time and VE of BNT162b2 booster vaccination against RT–PCR-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and severe COVID-19 outcomes (hospitalization or death). Compared with unvaccinated individuals, CoronaVac VE at 14–30 d after the second dose was 55.0% (95% confidence interval (CI): 54.3–55.7) against confirmed infection and 82.1% (95% CI: 81.4–82.8) against severe outcomes. VE decreased to 34.7% (95% CI: 33.1–36.2) against infection and 72.5% (95% CI: 70.9–74.0) against severe outcomes over 180 d after the second dose. A BNT162b2 booster, 6 months after the second dose of CoronaVac, improved VE against infection to 92.7% (95% CI: 91.0−94.0) and VE against severe outcomes to 97.3% (95% CI: 96.1−98.1) 14–30 d after the booster. Compared with younger age groups, individuals 80 years of age or older had lower protection after the second dose but similar protection after the booster. Our findings support a BNT162b2 booster vaccine dose after two doses of CoronaVac, particularly for the elderly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.