We propose a novel variational formulation for generating 3D models of objects from a single view. Based on a few user scribbles in an image, the algorithm automatically extracts the object silhouette and subsequently determines a 3D volume by minimizing the weighted surface area for a fixed user-specified volume. The respective energy can be efficiently minimized by means of convex relaxation techniques, leading to visually pleasing smooth surfaces within a matter of seconds. In contrast to existing techniques for single-view reconstruction, the proposed method is based on an implicit surface representation and a transparent optimality criterion, assuring high-quality 3D models of arbitrary topology with a minimum of user input.
We present a survey and a comparison of a variety of algorithms that have been proposed over the years to minimize multi-label optimization problems based on the Potts model. Discrete approaches based on Markov Random Fields as well as continuous optimization approaches based on partial differential equations can be applied to the task. In contrast to the case of binary labeling, the multi-label problem is known to be NP hard and thus one can only expect near-optimal solutions. In this paper, we carry out a theoretical comparison and an experimental analysis of existing approaches with respect to accuracy, optimality and runtime, aimed at bringing out the advantages and short-comings of the respective algorithms. Systematic quantitative comparison is done on the Graz interactive image segmentation benchmark. This paper thereby generalizes a previous experimental comparison (Klodt et al. 2008) from the binary to the multi-label case.
Abstract. We propose a convex optimization framework delivering intuitive and reasonable 3D meshes from a single photograph. For a given input image, the user can quickly obtain a segmentation of the object in question. Our algorithm then automatically generates an admissible closed surface of arbitrary topology without the requirement of tedious user input. Moreover we provide a tool by which the user is able to interactively modify the result afterwards through parameters and simple operations in a 2D image space. The algorithm targets a limited but relevant class of real world objects. The object silhouette and the additional user input enter a functional which can be optimized globally in a few seconds using recently developed convex relaxation techniques parallelized on state-of-the-art graphics hardware.
We propose a novel algorithmic solution for estimating a three-dimensional model of an object observed in a single image. Based on a minimal user input, the algorithm interactively determines the objects' silhouette and subsequently computes a silhouette-consistent 3D model which is precisely the globally minimal surface with user-specified volume. In contrast to a recently published approach to single view reconstruction, the proposed algorithm does not constrain the resolution in the depth-direction, it assures the global optimum and is faster by about an order of magnitude. Experiments demonstrate that plausible highresolution 3D models can be generated in fractions of a second and compare favorably with other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.