BackgroundEarly evolutionary theories of aging predict that populations which experience low extrinsic mortality evolve a retarded onset of senescence. Experimental support for this theory in vertebrates is scarce, in part for the difficulty of quantifying extrinsic mortality and its condition- and density-dependent components that –when considered- can lead to predictions markedly different to those of the “classical” theories. Here, we study annual fish of the genus Nothobranchius whose maximum lifespan is dictated by the duration of the water bodies they inhabit. Different populations of annual fish do not experience different strengths of extrinsic mortality throughout their life span, but are subject to differential timing (and predictability) of a sudden habitat cessation. In this respect, our study allows testing how aging evolves in natural environments when populations vary in the prospect of survival, but condition-dependent survival has a limited effect. We use 10 Nothobranchius populations from seasonal pools that differ in their duration to test how this parameter affects longevity and aging in two independent clades of these annual fishes.ResultsWe found that replicated populations from a dry region showed markedly shorter captive lifespan than populations from a humid region. Shorter lifespan correlated with accelerated accumulation of lipofuscin (an established age marker) in both clades. Analysis of wild individuals confirmed that fish from drier habitats accumulate lipofuscin faster also under natural conditions. This indicates faster physiological deterioration in shorter-lived populations.ConclusionsOur data provide a strong quantitative example of how extrinsic mortality can shape evolution of senescence in a vertebrate clade. Nothobranchius is emerging as a genomic model species. The characterization of pairs of closely related species with different longevities should provide a powerful paradigm for the identification of genetic variations responsible for evolution of senescence in natural populations.
The nutritional environments that organisms experience are inherently variable, requiring tight coordination of how resources are allocated to different functions relative to the total amount of resources available. A growing body of evidence supports the hypothesis that key endocrine pathways play a fundamental role in this coordination. In particular, the insulin/insulin-like growth factor signaling (IIS) and target of rapamycin (TOR) pathways have been implicated in nutrition-dependent changes in metabolism and nutrient allocation. However, little is known about the genetic basis of standing variation in IIS/TOR or how diet-dependent changes in expression in this pathway influence phenotypes related to resource allocation. To characterize natural genetic variation in the IIS/TOR pathway, we used >250 recombinant inbred lines (RILs) derived from a multiparental mapping population, the Synthetic Population Resource, to map transcript-level QTL of genes encoding 52 core IIS/TOR components in three different nutritional environments [dietary restriction (DR), control (C), and high sugar (HS)]. Nearly all genes, 87%, were significantly differentially expressed between diets, though not always in ways predicted by loss-of-function mutants. We identified (, local) expression QTL (eQTL) for six genes, all of which are significant in multiple nutrient environments. Further, we identified (, distant) eQTL for two genes, specific to a single nutrient environment. Our results are consistent with many small changes in the IIS/TOR pathways. A discriminant function analysis for the C and DR treatments identified a pattern of gene expression associated with the diet treatment. Mapping the composite discriminant function scores revealed a significant global eQTL within the DR diet. A correlation between the discriminant function scores and the median life span ( = 0.46) provides evidence that gene expression changes in response to diet are associated with longevity in these RILs.
All organisms use resources to grow, survive and reproduce. The supply of these resources varies widely across landscapes and time, imposing ultimate constraints on the maximal trait values for allocation-related traits. In this review, we address three key questions fundamental to our understanding of the evolution of allocation strategies and their underlying mechanisms. First, we ask: how diverse are flexible resource allocation strategies among different organisms? We find there are many, varied, examples of flexible strategies that depend on nutrition. However, this diversity is often ignored in some of the best-known cases of resource allocation shifts, such as the commonly observed pattern of lifespan extension under nutrient limitation. A greater appreciation of the wide variety of flexible allocation strategies leads directly to our second major question: what conditions select for different plastic allocation strategies? Here, we highlight the need for additional models that explicitly consider the evolution of phenotypically plastic allocation strategies and empirical tests of the predictions of those models in natural populations. Finally, we consider the question: what are the underlying mechanisms determining resource allocation strategies? Although evolutionary biologists assume differential allocation of resources is a major factor limiting trait evolution, few proximate mechanisms are known that specifically support the model. We argue that an integrated framework can reconcile evolutionary models with proximate mechanisms that appear at first glance to be in conflict with these models. Overall, we encourage future studies to: (i) mimic ecological conditions in which those patterns evolve, and (ii) take advantage of the 'omic' opportunities to produce multi-level data and analytical models that effectively integrate across physiological and evolutionary theory.
Annual fish of the genus Nothobranchius show large variations in lifespan and expression of age-related phenotypes between closely related populations. We studied N. kadleci and its sister species N. furzeri GRZ strain, and found that N.kadleci is longer-lived than the N. furzeri. Lipofuscin and apoptosis measured in the liver increased with age in N. kadleci with different profiles: lipofuscin increased linearly, while apoptosis declined in the oldest animals. More lipofuscin (P < 0.001) and apoptosis (P < 0.001) was observed in N. furzeri than in N. kadleci at 16w age. Lipofuscin and apoptotic cells were then quantified in hybrids from the mating of N. furzeri to N. kadleci. F1 individuals showed heterosis for lipofuscin but additive effects for apoptosis. These two age-related phenotypes were not correlated in F2 hybrids. Quantitative trait loci analysis of 287 F2 fish using 237 markers identified two QTL accounting for 10% of lipofuscin variance (P < 0.001) with overdominance effect. Apoptotic cells revealed three significant- and two suggestive QTL explaining 19% of variance (P < 0.001), showing additive and dominance effects, and two interacting loci. Our results show that lipofuscin and apoptosis are markers of different age-dependent biological processes controlled by different genetic mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.