Custom implants in Total Knee Arthroplasty (TKA) could improve prosthesis’ durability and patient’s comfort, but designing such personalized implants requires a simplified and thus automatic workflow to be easily integrated in the clinical routine. A good knowledge of the shape of the patient's femur and tibia is necessary to design it, but segmentation is still today a key issue. We present here an automatic segmentation approach of the three joints of the lower limb: hip, knee and ankle, using convolutional neural networks (CNNs) on successive transverse views from CT images. Our three 2D CNNs are built on the U-net model, and their specialization each on one joint allowed us to achieve promising results presented here. This could be integrated in a TKA planning software allowing the automatic design of TKA custom implants.
Transcranial Magnetic Stimulation (TMS) is a growing therapy for a variety of psychiatric and neurological disorders that arise from or are modulated by cortical regions of the brain represented by singular 3D target points. These target points are often determined manually with assistance from a pre-operative T1-weighted MRI, although there is growing interest in automatic target point localisation using an atlas. However, both approaches can be time-consuming which has an effect on the clinical workflow and the latter does not take into account patient variability such as the varying number of cortical gyri where these targets are located. Methods: This paper proposes a multi-resolution convolutional neural network for point localisation in MR images for a priori defined points in increasingly finely resolved versions of the input image. This approach is both fast and highly memory efficient, allowing it to run in high-throughput centres, and has the capability of distinguishing between patients with high levels of anatomical variability. Results: Preliminary experiments have found the accuracy of this network to be 7.26 ± 5.30 mm, compared to 9.39 ± 4.63 mm for deformable registration and 6.94 ± 5.10 mm for a human expert. For most treatment points, the human expert and proposed CNN statistically significantly outperform registration, but neither statistically significantly outperforms the other, suggesting that the proposed network has human-level performance. Conclusions: The
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.