On the basis of first-principles DFT calculations the wave-vector and temperature dependencies of the Lindhard response function of the blue bronze K 0.3 MoO 3 have been calculated. The k I F + k II F interband component of the response, which is responsible for the Peierls instability, has been quantitatively analyzed. It is found that (i) the electron-hole coherence length of this response determines the length scale of the experimental intrachain CDW correlations, and (ii) the intrachain q dependence of such a response also determines the shape of the Kohn anomaly experimentally measured. These findings provide compelling evidence that the Peierls transition of the blue bronze K 0.3 MoO 3 follows the weak electron-phonon coupling scenario in the adiabatic approximation, something that had not yet been proved on the basis of first-principles calculations for a real material. It is proposed that the CDW interchain coupling occurs through a Coulomb coupling between dipolar CDWs. The nature of the phonon mode leading to the dipolar nature of the CDWs is also discussed, and the relevance of these results to rationalize the CDW instabilities in other oxides and bronzes is pointed out. These findings are also contrasted with recent results for other CDW materials like chalcogenides and tellurides.
The mixed-valence FeFe 2D coordination polymer formulated as [TAG][FeFe(ClCNAn)]·(solvate) 1 (TAG = tris(amino)-guanidinium, ClCNAn = chlorocyanoanilate dianionic ligand) crystallized in the polar trigonal space group P3. In the solid-state structure, determined both at 150 and at 10 K, anionic 2D honeycomb layers [FeFe(ClCNAn)] establish in the ab plane, with an intralayer metal-metal distance of 7.860 Å, alternating with cationic layers of TAG. The similar Fe-O distances suggest electron delocalization and an average oxidation state of +2.5 for each Fe center. The cation imposes its C symmetry to the structure and engages in intermolecular N-H···Cl hydrogen bonding with the ligand. Magnetic susceptibility characterization indicates magnetic ordering below 4 K and the presence of a hysteresis loop at 2 K with a coercive field of 60 Oe. Mössbauer measurements are in agreement with the existence of Fe(+2.5) ions at RT and statistic charge localization at 10 K. The compound shows semiconducting behavior with the in-plane conductivity of 2 × 10 S/cm, 3 orders of magnitude higher than the perpendicular one. A small-polaron hopping model has been applied to a series of oxalate-type FeFe 2D coordination polymers, providing a clear explanation on the much higher conductivity of the anilate-based systems than the oxalate ones.
Ferroelectric materials are characterized by a spontaneous polar distortion. The behavior of such distortions in the presence of free charge is the key to the physics of metallized ferroelectrics in particular, and of structurally-polar metals more generally. Using first-principles simulations, here we show that a polar distortion resists metallization and the attendant suppression of longrange dipolar interactions in the vast majority of a sample of 11 representative ferroelectrics. We identify a meta-screening effect, occurring in the doped compounds as a consequence of the charge rearrangements associated to electrostatic screening, as the main factor determining the survival of a non-centrosymmetric phase. Our findings advance greatly our understanding of the essentials of structurally-polar metals, and offer guidelines on the behavior of ferroelectrics upon field-effect charge injection or proximity to conductive device elements.
Bulk and single-layer 2H-NbSe 2 exhibit identical charge density wave order (CDW) with a quasi-commensurate 3×3 superlattice periodicity. Here we combine scanning tunnelling microscopy (STM) imaging at T = 1 K of 2H-NbSe 2 with firstprinciples density functional theory (DFT) calculations to investigate the structural atomic rearrangement of this CDW phase. Our calculations for single-layers reveal that six different atomic structures are compatible with the 3×3 CDW distortion, although all of them lie on a very narrow energy range of at most 3 meV per formula unit, suggesting the coexistence of such structures. Our atomically resolved STM images of bulk 2H-NbSe 2 unambiguously confirm this by identifying two of these structures. Remarkably, these structures differ from the X-ray crystal structure reported for the bulk 3×3 CDW which, in fact, is also one of the six DFT structures located for the single-layer. Our calculations also show that due to the minute energy difference between the different phases, the ground state of the 3×3 CDW could be extremely sensitive to doping, external strain or internal pressure within the crystal. The presence of multi-phase CDW order in 2H-NbSe 2 may provide further understanding of its low temperature state and the competition between different instabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.