Arsenic (As) ranks among the priority metal(loid)s that are of public health concern. In the environment, arsenic is present in different forms, organic or inorganic, featured by various toxicity levels. Bacteria have developed different strategies to deal with this toxicity involving different resistance genetic determinants. Bacterial strains of Rhodococcus genus, and more in general Actinobacteria phylum, have the ability to cope with high concentrations of toxic metalloids, although little is known on the molecular and genetic bases of these metabolic features. Here we show that Rhodococcus aetherivorans BCP1, an extremophilic actinobacterial strain able to tolerate high concentrations of organic solvents and toxic metalloids, can grow in the presence of high concentrations of As(V) (up to 240 mM) under aerobic growth conditions using glucose as sole carbon and energy source. Notably, BCP1 cells improved their growth performance as well as their capacity of reducing As(V) into As(III) when the concentration of As(V) is within 30–100 mM As(V). Genomic analysis of BCP1 compared to other actinobacterial strains revealed the presence of three gene clusters responsible for organic and inorganic arsenic resistance. In particular, two adjacent and divergently oriented ars gene clusters include three arsenate reductase genes ( arsC 1/2/3) involved in resistance mechanisms against As(V). A sequence similarity network (SSN) and phylogenetic analysis of these arsenate reductase genes indicated that two of them (ArsC2/3) are functionally related to thioredoxin (Trx)/thioredoxin reductase (TrxR)-dependent class and one of them (ArsC1) to the mycothiol (MSH)/mycoredoxin (Mrx)-dependent class. A targeted transcriptomic analysis performed by RT-qPCR indicated that the arsenate reductase genes as well as other genes included in the ars gene cluster (possible regulator gene, arsR , and arsenite extrusion genes, arsA, acr3 , and arsD ) are transcriptionally induced when BCP1 cells were exposed to As(V) supplied at two different sub-lethal concentrations. This work provides for the first time insights into the arsenic resistance mechanisms of a Rhodococcus strain, revealing some of the unique metabolic requirements for the environmental persistence of this bacterial genus and its possible use in bioremediation procedures of toxic metal contaminated sites.
This study evaluated the phytoextraction capacity of the fern Pteris vittata grown on a natural arsenic-rich soil of volcanic-origin from the Viterbo area in central Italy. This calcareous soil is characterized by an average arsenic concentration of 750 mg kg−1, of which 28% is bioavailable. By means of micro-energy dispersive X-ray fluorescence spectrometry (μ-XRF) we detected As in P. vittata fronds after just 10 days of growth, while a high As concentrations in fronds (5,000 mg kg−1), determined by Inductively coupled plasma-optical emission spectrometry (ICP-OES), was reached after 5.5 months. Sixteen arsenate-tolerant bacterial strains were isolated from the P. vittata rhizosphere, a majority of which belong to the Bacillus genus, and of this majority only two have been previously associated with As. Six bacterial isolates were highly As-resistant (> 100 mM) two of which, homologous to Paenarthrobacter ureafaciens and Beijerinckia fluminensis, produced a high amount of IAA and siderophores and have never been isolated from P. vittata roots. Furthermore, five isolates contained the arsenate reductase gene (arsC). We conclude that P. vittata can efficiently phytoextract As when grown on this natural As-rich soil and a consortium of bacteria, largely different from that usually found in As-polluted soils, has been found in P. vittata rhizosphere.
The bio-agronomical response, along with the arsenic (As) translocation and partitioning were investigated in self-grafted melon "Proteo", or grafted onto three interspecific ("RS841", "Shintoza", and "Strong Tosa") and two intraspecific hybrids ("Dinero" and "Magnus"). Plants were grown in a soilless system and exposed to two As concentrations in the nutrient solution (0.002 and 3.80 mg L −1 , referred to as As− and As+) for 30 days. The As+ treatment lowered the aboveground dry biomass (−8%, on average), but the grafting combinations differed in terms of photosynthetic response. As regards the metalloid absorption, the rootstocks revealed a different tendency to uptake As into the root, where its concentration varied from 1633.57 to 369.10 mg kg −1 DW in "Magnus" and "RS841", respectively. The high bioaccumulation factors in root (ranging from 97.13 to 429.89) and the low translocation factors in shoot (from 0.015 to 0.071) and pulp (from 0.002 to 0.008) under As+, showed a high As mobility in the substrate-plant system, and a lower mobility inside the plants. This tendency was higher in the intraspecific rootstocks. Nonetheless, the interspecific "RS841" proved to be the best rootstock in maximizing yield and minimizing, at the same time, the As concentration into the fruit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.