CFDS is a useful tool in the differential diagnosis of AIT. This differentiation appeared to be of clinical relevance as regards therapeutic choice. Separate evaluation of parenchymal blood flow from that of nodules may prove beneficial in the diagnosis of underlying thyroid diseases in patients with type 1 AIT.
Abstract. This work addresses the impact of climate change on the hydrology of a catchment in the Mediterranean, a region that is highly susceptible to variations in rainfall and other components of the water budget. The assessment is based on a comparison of responses obtained from five hydrologic models implemented for the Rio Mannu catchment in southern Sardinia (Italy). The examined models – CATchment HYdrology (CATHY), Soil and Water Assessment Tool (SWAT), TOPographic Kinematic APproximation and Integration (TOPKAPI), TIN-based Real time Integrated Basin Simulator (tRIBS), and WAter balance SImulation Model (WASIM) – are all distributed hydrologic models but differ greatly in their representation of terrain features and physical processes and in their numerical complexity. After calibration and validation, the models were forced with bias-corrected, downscaled outputs of four combinations of global and regional climate models in a reference (1971–2000) and future (2041–2070) period under a single emission scenario. Climate forcing variations and the structure of the hydrologic models influence the different components of the catchment response. Three water availability response variables – discharge, soil water content, and actual evapotranspiration – are analyzed. Simulation results from all five hydrologic models show for the future period decreasing mean annual streamflow and soil water content at 1 m depth. Actual evapotranspiration in the future will diminish according to four of the five models due to drier soil conditions. Despite their significant differences, the five hydrologic models responded similarly to the reduced precipitation and increased temperatures predicted by the climate models, and lend strong support to a future scenario of increased water shortages for this region of the Mediterranean basin. The multimodel framework adopted for this study allows estimation of the agreement between the five hydrologic models and between the four climate models. Pairwise comparison of the climate and hydrologic models is shown for the reference and future periods using a recently proposed metric that scales the Pearson correlation coefficient with a factor that accounts for systematic differences between datasets. The results from this analysis reflect the key structural differences between the hydrologic models, such as a representation of both vertical and lateral subsurface flow (CATHY, TOPKAPI, and tRIBS) and a detailed treatment of vegetation processes (SWAT and WASIM).
Durum wheat is the most important C3 rainfed crop in southern Sardinia, Italy. Climate variability and socio- economic factors are the main sources of uncertainty and concern for farmers in this region that has experienced severe drought conditions and problems of competing water demands during the last decades. Within the framework of a European Union project, CLIMB (Climate Induced Changes in the Mediterranean Region), durum wheat production was simulated under future climate change conditions to evaluate the effects of increased maximum temperature and high rainfall variability on crop yield, and the adaptability of the crop response. The first stage of this work was devoted to properly calibrating the AquaCrop model and testing its predictive performance, prior to applying it under future climate change scenarios. Durum wheat (CV Creso) yield and daily meteorological data collected and recorded in the Agris experimental fields during the period 1995–2012 were systematically checked and analyzed before their use for calibration of the AquaCrop model. After calibration the model showed a generally good performance with a significant correlation between observed and simulated yield for durum wheat during the considered period, including the year 1995 that was characterized by a severe drought that led to water stress conditions. A future scenario of climate change was then used as input to the AquaCrop model to predict wheat yield response and to investigate the control of water availability on rainfed crop production for the period 1951–2100. The simulated future scenarios show potential improved productivity arising from the increased CO2 concentration. This encouraging result is however tempered by increased uncertainty and fluctuations in rainfall during the fall and early winter periods (September–December). The possible tradeoffs between these factors, as well as the expected negative effects of increased maximum temperatures, are being further examined
We report a case of localized Castleman's disease of mesentery, studied with sonography, that was incidentally detected as an abdominal mass in a patient with Graves' disease. Its lymphatic nature and mesenteric origin was indicated preoperatively on the basis of gray-scale and color Doppler sonographic features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.