ObjectiveTo report clinical and laboratory characteristics, as well as treatment and clinical outcomes of patients admitted for neurologic diseases with and without COVID-19.MethodsIn this retrospective, single center cohort study, we included all adult inpatients with confirmed COVID-19, admitted to a Neuro-COVID Unit from February 21, 2020, who had been discharged or died by April 5, 2020. Demographic, clinical, treatment, and laboratory data were extracted from medical records and compared (FDR-corrected) to those of neurologic patients without COVID-19 admitted in the same period.ResultsOne hundred seventy-three patients were included in this study, of whom 56 were positive for COVID-19 while 117 were negative for COVID-19. Patients with COVID-19 were older (77.0, IQR 67.0–83.8 vs 70.1, IQR 52.9–78.6, p = 0.006), had a different distribution regarding admission diagnoses, including cerebrovascular disorders (n = 43, 76.8% vs n = 68, 58.1%), and had a higher quick Sequential Organ Failure Assessment (qSOFA) score on admission (0.5, IQR 0.4–0.6 vs 0.9, IQR 0.7–1.1, p = 0.006). In-hospital mortality rates (n = 21, 37.5% vs n = 5, 4.3%, p < 0.001) and incident delirium (n = 15, 26.8% vs n = 9, 7.7%, p = 0.003) were significantly higher in the COVID-19 group. COVID-19 and non-COVID patients with stroke had similar baseline characteristics but patients with COVID-19 had higher modified Rankin scale scores at discharge (5.0, IQR 2.0–6.0 vs 2.0, IQR 1.0–3.0, p < 0.001), with a significantly lower number of patients with a good outcome (n = 11, 25.6% vs n = 48, 70.6%, p < 0.001). In patients with COVID-19, multivariable regressions showed increasing odds of in-hospital death associated with higher qSOFA scores (OR 4.47, 95% CI 1.21–16.5; p = 0.025), lower platelet count (0.98, 0.97–0.99; p = 0.005) and higher lactate dehydrogenase (1.01, 1.00–1.03; p = 0.009) on admission.ConclusionsCOVID-19 patients admitted with neurologic disease, including stroke, have a significantly higher in-hospital mortality, incident delirium and higher disability than patients without COVID-19.
Background Several preclinical and clinical investigations have argued for nervous system involvement in SARS-CoV-2 infection. Some sparse case reports have described various forms of encephalitis in COVID-19 disease, but very few data have focused on clinical presentations, clinical course, response to treatment and outcomes. Methods The ENCOVID multicentre study included patients with encephalitis with full infectious screening, CSF, EEG, MRI data and confirmed SARS-CoV-2 infection recruited from 13 centres in northern Italy. Clinical presentation and laboratory markers, severity of COVID-19 disease, response to treatment and outcomes were recorded. Results twenty-five cases of encephalitis positive for SARS-CoV-2 infection were included. CSF showed hyperproteinorrachia and/or pleocytosis in 68% of cases whereas SARS-CoV-2 RNA by RT-PCR resulted negative. Based on MRI, cases were classified as ADEM (n=3), limbic encephalitis (LE, n=2), encephalitis with normal imaging (n=13) and encephalitis with MRI alterations (n=7). ADEM and LE cases showed a delayed onset compared to the other encephalitis (p=0.001) and were associated with previous more severe COVID-19 respiratory involvement. Patients with MRI alterations exhibited worse response to treatment and final outcomes compared to other encephalitis. Conclusions SARS-CoV-2 infection is associated with a wide spectrum of encephalitis characterized by different clinical presentation, response to treatment and outcomes.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE-MTDPS1) is a devastating autosomal recessive disorder due to mutations in TYMP, which cause a loss of function of thymidine phosphorylase (TP), nucleoside accumulation in plasma and tissues, and mitochondrial dysfunction. The clinical picture includes progressive gastrointestinal dysmotility, cachexia, ptosis and ophthalmoparesis, peripheral neuropathy, and diffuse leukoencephalopathy, which usually lead to death in early adulthood. Other two MNGIE-type phenotypes have been described so far, which are linked to mutations in POLG and RRM2B genes. Therapeutic options are currently available in clinical practice (allogeneic hematopoietic stem cell transplantation and carrier erythrocyte entrapped thymidine phosphorylase therapy) and newer, promising therapies are expected in the near future. Since successful treatment is strictly related to early diagnosis, it is essential that clinicians be warned about the clinical features and diagnostic procedures useful to suspect diagnosis of MNGIE-MTDPS1. The aim of this review is to promote the knowledge of the disease as well as the involved mechanisms and the diagnostic processes in order to reach an early diagnosis.
COVID-19 impact on consecutive neurological patients admitted to the emergency department Letter copyright.
Disturbed brain-to-blood elimination of β-amyloid (Aβ) promotes cerebral Aβ accumulation in Alzheimer's disease. Considering that the kidneys are involved in Aβ elimination from the blood, we evaluated how chronic kidney disease (CKD) affects plasma Aβ. In 106 CKD patients stages 3-5 (including 19 patients on hemodialysis and 15 kidney recipients), 53 control subjects with comparable vascular risk profile and 10 kidney donors, plasma Aβ was determined using electrochemiluminescence immunoassay and gel electrophoresis followed by Western blotting. Plasma Aβ increased with CKD stage (control = 182.98 ± 76.73 pg/ml; CKD3A = 248.34 ± 103.77 pg/ml; CKD3B = 259.25 ± 97.74 pg/ml; CKD4 = 489.16 ± 154.16 pg/ml; CKD5 = 721.19 ± 291.69 pg/ml) and was not influenced by hemodialysis (CKD5D = 697.97 ± 265.91 pg/ml). Renal transplantation reduced plasma Aβ (332.57 ± 162.82 pg/ml), whereas kidney donation increased it (251.51 ± 34.34 pg/ml). Gel electrophoresis confirmed stage-dependent elevation namely of Aβ1-40, the most abundant Aβ peptide. In a multivariable regression including age, sex, estimated glomerular filtration rate (eGFR), potassium, hemoglobin, urine urea, and urine total protein, the factors eGFR (β = -0.42, p < 0.001), hemoglobin (β = -0.17, p = 0.020), and urine protein (β = 0.26, p = 0.008) were associated with plasma Aβ. In a regression including age, sex, eGFR, potassium, hemoglobin and the vascular risk factors systolic blood pressure, smoking, LDL, HDL, HbA1c, body mass index, brain-derived natriuretic peptide and fibrinogen, the factors eGFR (β = -0.53, p < 0.001), body mass index (β = -0.17, p = 0.022), and fibrinogen (β = 0.18, p = 0.024) were associated with plasma Aβ. Our results demonstrate a stage-dependent plasma Aβ increase that is augmented by loss of glomerulotubular integrity, low body weight, and inflammation, demonstrating a multifaceted role of renal dysfunction in Aβ retention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.