The present work is focused on the airblast atomization in a gas turbine model combustor. Swirl flows in such combustion chambers form an inner recirculation zone that can develop a precessing vortex core. This instability affects the velocity field at the exit of the nozzle, where the fuel is atomized. The influence of the precessing vortex core on the airblast atomization is examined in this work. The flow field in the combustion chamber is examined under reacting and non-reacting conditions. The velocity amplitudes under reacting conditions are more than twice as high compared to non-reacting conditions. The influence of the precessing vortex core on the airblast atomization process is examined in detail at an atomization test rig with a perspex nozzle. High speed shadowgraphy and POD analysis have been performed of the liquid film on the prefilmer as well as on the ligaments formed at the atomizing edge. It was observed that although the PVC does affect the liquid film flow of the prefilming surface, it does not affect the breakup into ligaments, i. e. primary atomization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.