Two small polypeptides, PorA and PorH, are known to form cell wall channels in Corynebacterium glutamicum and in Corynebacterium efficiens. The genes coding for both polypeptides are localized in close proximity to one another between the genes coding for GroEl2 and a polyphosphate kinase (PKK2). In this study, we investigated the relationship of PorA and PorH to one another. The results suggested that the major cell wall channels of Corynebacterium glutamicum, Corynebacterium efficiens, and Corynebacterium diphtheriae need the obligatory presence of two distinct polypeptides, one of class PorA and one of class PorH, to form an active cell wall channel. Identification of genes coding for homologous proteins in the chromosome of Corynebacterium callunae suggested a similar result for this strain. Contrary to our previous reports on channel-forming proteins in these strains, a heterooligomeric structure composed of PorA and PorH is needed in all of them to form the major cell wall channel. This was concluded from complementation experiments using a porH-and porAdeficient C. glutamicum strain. The stringent necessity of proteins of either class to recover the wild-type channels was demonstrated by black lipid bilayer experiments using detergent or organic solvent extracts of the complemented porH-and porA-deficient C. glutamicum strain. The channel-forming capability of recombinant expressed, affinity-purified PorA and PorH proteins of C. glutamicum revealed that the channels consisted solely of these two components. This agreed with results obtained from a transcript coding for both channelforming components identified in C. glutamicum by Northern blot analysis and reverse transcription-PCR analysis. The transcription start point of the genes was determined by the rapid amplification of cDNA ends approach, allowing the prediction of the ؊35 and ؊10 regions of the promoter. The results demonstrate that the cell wall channels within the genus Corynebacterium may be formed by two-component oligomers.
The cell wall fraction of the gram-positive, nontoxic Corynebacterium diphtheriae strain C8 r (؊) Tox ؊ ؍( ATCC 11913) contained a channel-forming protein, as judged from reconstitution experiments with artificial lipid bilayer experiments. The channel-forming protein was present in detergent-treated cell walls and in extracts of whole cells obtained using organic solvents. The protein had an apparent molecular mass of about 66 kDa as determined on Tricine-containing sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels and consisted of subunits having a molecular mass of about 5 kDa. Single-channel experiments with the purified protein suggested that the protein formed channels with a single-channel conductance of 2.25 nS in 1 M KCl. Further single-channel analysis suggested that the cell wall channel is wide and water filled because it has only slight selectivity for cations over anions and its conductance followed the mobility sequence of cations and anions in the aqueous phase. Antibodies raised against PorA, the subunit of the cell wall channel of Corynebacterium glutamicum, detected both monomers and oligomers of the isolated protein, suggesting that there are highly conserved epitopes in the cell wall channels of C. diphtheriae and PorA. Localization of the protein on the cell surface was confirmed by an enzyme-linked immunosorbent assay. The prospective homology of PorA with the cell wall channel of C. diphtheriae was used to identify the cell wall channel gene, cdporA, in the known genome of C. diphtheriae. The gene and its flanking regions were cloned and sequenced. CdporA is a protein that is 43 amino acids long and does not have a leader sequence. cdporA was expressed in a C. glutamicum strain that lacked the major outer membrane channels PorA and PorH. Organic solvent extracts of the transformed cells formed in lipid bilayer membranes the same channels as the purified CdporA protein of C. diphtheriae formed, suggesting that the expressed protein is able to complement the PorA and PorH deficiency of the C. glutamicum strain. The study is the first report of a cell wall channel in a pathogenic Corynebacterium strain.
Corynebacterium jeikeium, a resident of human skin, is often associated with multidrug resistant nosocomial infections in immunodepressed patients. C. jeikeium K411 belongs to mycolic acid-containing actinomycetes, the mycolata and contains a channel-forming protein as judged from reconstitution experiments with artificial lipid bilayer experiments. The channel-forming protein was present in detergent treated cell walls and in extracts of whole cells using organic solvents. A gene coding for a 40 amino acid long polypeptide possibly responsible for the pore-forming activity was identified in the known genome of C. jeikeium by its similar chromosomal localization to known porH and porA genes of other Corynebacterium strains. The gene jk0268 was expressed in a porin deficient Corynebacterium glutamicum strain. For purification temporarily histidine-tailed or with a GST-tag at the N-terminus, the homogeneous protein caused channel-forming activity with an average conductance of 1.25 nS in 1M KCl identical to the channels formed by the detergent extracts. Zero-current membrane potential measurements of the voltage dependent channel implied selectivity for anions. This preference is according to single-channel analysis caused by some excess of cationic charges located in the channel lumen formed by oligomeric alpha-helical wheels. The channel has a suggested diameter of 1.4 nm as judged from the permeability of different sized hydrated anions using the Renkin correction factor. Surprisingly, the genome of C. jeikeium contained only one gene coding for a cell wall channel of the PorA/PorH type found in other Corynebacterium species. The possible evolutionary relationship between the heterooligomeric channels formed by certain Corynebacterium strains and the homooligomeric pore of C. jeikeium is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.