Migraine is the most disabling and expensive chronic disorders, the etiology of which is still not fully known. The neuronal systems, (glutammatergic, dopaminergic, serotoninergic and GABA-ergic) whose functionality is partly attributable to genetically determined factors, has been suggested to play an important role. The treatment of acute attacks and the prophylactic management of chronic forms include the use of different category of drugs, and it is demonstrated that not each subject has the same clinical answer to them. The reason of this is to be searched in different functional capacity and quantity of phase I enzymes (such as different isoforms of CYP P450), phase II enzymes (such as UDP-glucuronosyltransferases), receptors (such as OPRM1 for opioids) and transporters (such as ABCB1) involved in the metabolic destiny of each drug, all of these dictated by DNA and RNA variations. The general picture is further exacerbated by the need for polytherapies, often also to treat comorbidities, which may interfere with the pharmacological action of anti-migraine drugs. Personalized medicine has the objective of setting the optimal therapies in the light of the functional biochemical asset and of the comorbidities of the individual patient, in order to obtain the best clinical response. Novel therapeutic perspectives in migraine includes biotechnological drugs directed against molecules (such as CGRP and its receptor) that cause vasodilatation at the peripheral level of the meningeal blood vessels and reflex stimulation of the parasympathetic system. Drug-drug interactions and the possible competitive metabolic destiny should be studied by the application of pharmacogenomics in large scale. Drug-drug interactions and their possible competitive metabolic destiny should be studied by the application of pharmacogenomics in large scale.
In March 2020, the World Health Organization (WHO) declared that the COVID-19 outbreak recorded over the previous months could be characterized as a pandemic. The first known Italian SARS-CoV-2 positive case was reported on 21 February. In some countries, cases of suspected “COVID-19-like pneumonia” had been reported earlier than those officially accepted by health authorities. This has led many investigators to check preserved biological or environmental samples to see whether the virus was detectable on dates prior to those officially stated. With regard to Italy, the results of a microbiological screening in sewage samples collected between the end of February and the beginning of April 2020 from wastewaters in Milan (Northern Italy) and Rome (Central Italy) showed presence of SARS-CoV-2. In the present study, we evaluated, by means of a standardized diagnostic method, the SARS-CoV-2 infection prevalence amongst patients affected by severe acute respiratory syndrome (SARI) in an academic hospital located in Central Italy during the period of 1 November 2019–1 March 2020. Overall, the number of emergency room (ER) visits during the investigated period was 13,843. Of these, 1208 had an influenza-like syndrome, but only 166 matched the definition of SARI as stated in the study protocol. A total of 52 SARI cases were laboratory confirmed as influenza: 26 as a type B virus, 25 as a type A, and 1 as both viruses. Although about 17% of the total sample had laboratory or radiological data compatible with COVID-19, all the nasopharyngeal swabs stored underwent SARS-CoV-2 RT-PCR and tested negative. Based on our result, it is confirmed that the COVID-19 pandemic spread did not start prior to the “official” onset in central Italy. Routine monitoring of SARI causative agents at the local level is critical for reporting epidemiologic and etiologic trends that may differ from one country to another and also among different influenza seasons. This has a practical impact on prevention and control strategies.
Background On 9th January 2020, China CDC reported a novel coronavirus (later named SARS-CoV-2) as the causative agent of the coronavirus disease 2019 (COVID-19). Identifying the first appearance of virus is of epidemiological importance to tracking and mapping the spread of SARS-CoV-2 in a country. We therefore conducted a retrospective observational study to detect SARS-CoV-2 in oropharyngeal samples collected from hospitalized patients with a Severe Acute Respiratory Infection (SARI) enrolled in the DRIVE (Development of Robust and Innovative Vaccine Effectiveness) study in five Italian hospitals (CIRI-IT BIVE hospitals network) (1st November 2019 – 29th February 2020). Objectives To acquire new information on the real trend in SARS-CoV-2 infection during pandemic phase I and to determine the possible early appearance of the virus in Italy. Materials and methods Samples were tested for influenza [RT-PCR assay (A/H1N1, A/H3N2, B/Yam, B/Vic)] in accordance with the DRIVE study protocol. Subsequently, swabs underwent molecular testing for SARS-COV-2. [one-step real-time multiplex retro-transcription (RT) PCR]. Results In the 1683 samples collected, no evidence of SARS-CoV-2 was found. Moreover, 28.3% (477/1683) of swabs were positive for influenza viruses, the majority being type A (358 vs 119 type B). A/H3N2 was predominant among influenza A viruses (55%); among influenza B viruses, B/Victoria was prevalent. The highest influenza incidence rate was reported in patients aged 0–17 years (40.3%) followed by those aged 18–64 years (24.4%) and ≥65 years (14.8%). Conclusions In Italy, some studies have shown the early circulation of SARS-CoV-2 in northern regions, those most severely affected during phase I of the pandemic. In central and southern regions, by contrast no early circulation of the virus was registered. These results are in line with ours. These findings highlight the need to continue to carry out retrospective studies, in order to understand the epidemiology of the novel coronavirus, to better identify the clinical characteristics of COVID-19 in comparison with other acute respiratory illnesses (ARI), and to evaluate the real burden of COVID-19 on the healthcare system.
Aim To develop an instrument to investigate knowledge and predictive factors of needlestick and sharps injuries (NSIs) in nursing students during clinical placements. Design Instrument development and cross‐sectional study for psychometric testing. Methods A self‐administered instrument including demographic data, injury epidemiology and predictive factors of NSIs was developed between October 2018–January 2019. Content validity was assessed by a panel of experts. The instrument's factor structure and discriminant validity were explored using principal components analysis. The STROBE guidelines were followed. Results Evidence of content validity was found (S‐CVI 0.75; I‐CVI 0.50–1.00). A three‐factor structure was shown by exploratory factor analysis. Of the 238 participants, 39% had been injured at least once, of which 67.3% in the second year. Higher perceptions of “personal exposure” (4.06, SD 3.78) were reported by third‐year students. Higher scores for “perceived benefits” of preventive behaviours (13.6, SD 1.46) were reported by second‐year students.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.