Model transformation is one of the key activities in model-driven software development. An increasingly popular technology to define modeling languages is provided by the Eclipse Modeling Framework (EMF). Several EMF model transformation approaches have been developed, focusing on different transformation aspects. To validate model transformations with respect to functional behavior and correctness, a formal foundation is needed. In this paper, we define consistent EMF model transformations as a restricted class of typed graph transformations using node type inheritance. Containment constraints of EMF model transformations are translated to a special kind of graph transformation rules such that their application leads to consistent transformation results only. Thus, consistent EMF model transformations behave like algebraic graph transformations and the rich theory of algebraic graph transformation can be applied to these EMF model transformations to show functional behavior and correctness. Furthermore, we propose parallel graph transformation as a suitable framework for modeling EMF model transformations with multi-object structures. Rules extended by multi-object structures can specify a flexible number of recurring structures. The actual number of recurring structures is dependent on the application context of such a rule. We illustrate our approach by selected refactorings of simplified statechart models. Finally, we discuss the implementation of our concepts in a tool environment for EMF model transformations.
Abstract. The Eclipse Modeling Framework (EMF) provides a modeling and code generation framework for Eclipse applications based on structured data models. Although EMF provides basic operations for modifying EMF based models, a framework for graphical definition of rule-based modification of EMF models is still missing. In this paper we present a framework for in-place EMF model transformation based on graph transformation. Transformations are visually defined by rules on object patterns typed over an EMF core model. Defined transformation systems can be compiled to Java code building up on generated EMF classes. As running example different refactoring methods for Ecore models are considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.