Plant bacterial diseases are routinely managed with scheduled treatments based on heavy metal compounds or on antibiotics; to reduce the negative environmental impact due to the use of such chemical compounds, as pollution or selection of antibiotic resistant pathogens, the integrated control management is required. In the frame of a sustainable agriculture the use of bacterial antagonists, biological agents, plant defence response elicitors or resistant host plant genotypes are the most effective approaches. In this work, cold atmospheric pressure plasma (CAP) was applied to sterile distilled water, inducing the production of a hydrogen peroxide, nitrite and nitrate, and a pH reduction. In particular, an atmospheric pressure dielectric barrier discharge (DBD) has been used to produce plasma activated water (PAW), that was firstly assayed in
in vitro
experiments and then
in planta
through application at the root apparatus of tomato plants, against
Xanthomonas vesicatoria
(Xv), the etiological agent of bacterial leaf spot. Moreover, the transcription abundance of five genes related to the plant defense was investigated in response to PAW treatment.
PAW did not show direct antimicrobial activity against Xv in
in vitro
experiments, but it enhanced the tomato plants defenses. It was effective in reducing the disease severity by giving relative protections of
ca
. 61, 51 and 38% when applied 1 h, 24 h and 6 days before the experimental inoculation, respectively. In addition, the experiments highlighted the
pal
gene involvement in response to the PAW treatments and against the pathogen; its transcription levels resulted significantly high from 1 to 48 h until their decrease 192 h after PAW application.
Electronic nose technology has recently been applied to the detection of several plant diseases and pests, with promising results. However, in spite of its numerous advantages, including operational simplicity, non-destructivity, and bulk sampling, drawbacks include a low sensitivity and specificity in comparison with microbiological and molecular methods. A critical review of the use of an electronic nose for plant disease diagnosis and pest detection is presented, describing the instrumental and procedural advances of sensorial analysis, for the improvement of discrimination between healthy and infected or infested plants. In conclusion, the use of electronic nose technology is suggested to assist, direct, and optimise traditionally adopted diagnostic techniques.
The rapid spreading of the disease during last few years highlighted the need of a quick, sensitive and reliable method for Pseudomonas syringae pv. actinidiae (Psa) detection, to find possible inoculum sources and limit the pathogen spreading. A PCR method, using new primers designed on the gene encoding a putative outer membrane protein P1, was developed to detect Psa in symptomatic and asymptomatic tissue; a nested-PCR was also applied. Bleeding sap samples, collected in early spring from orchards with symptomatic and asymptomatic trees, were used both for PCR assays and for pathogen isolation and identification. The PCR and nested PCR methods were able to detect Psa presence at very low concentration from plant and pollen extracts; RFLP analyses with BclI on PCR and nested PCR amplicons confirmed the assay specificity, while the digestion with BfmI and AluI allowed to discriminate Psa strains isolated before 2008 from those isolated after 2008. Furthermore, the PCR and nested PCR on crude bleeding sap samples detected the presence of the pathogen in 3 and 5 of the 15 assayed samples, respectively. Direct isolation from the same samples and bacterial identification confirmed the results of molecular analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.