Microalbuminuria predicts overt nephropathy in non-insulin-dependent diabetic (NIDDM) patients; however, the structural basis for this functional abnormality is unknown. In this study we evaluated renal structure and function in a cohort of 34 unselected microalbuminuric NIDDM patients (26 male/8 female, age: 58 +/- 7 years, known diabetes duration: 11 +/- 6 years, HbA1c: 8.5 +/- 1.6%). Systemic hypertension was present in all but 3. Glomerular filtration rate (GFR) was 101 +/- 27 ml.min-1.1.73 m-2 and albumin excretion rate (AER) 44 (20-199) micrograms/ min. Light microscopic slides were categorized as: C I) normal or near normal renal structure; C II) changes "typical" of diabetic nephropathology in insulin-dependent diabetes (IDDM) (glomerular, tubulo-interstitial and arteriolar changes occurring in parallel); C III) "atypical" patterns of injury, with absent or only mild diabetic glomerular changes associated with disproportionately severe renal structural changes including: important tubulo-interstitial with or without arteriolar hyalinosis with or without global glomerular sclerosis. Ten patients (29.4%) were classified as C I, 10 as C II (29.4%) and 14 as C III (41.2%); none of these patients had any definable non-diabetic renal disease. GFR, AER and blood pressure were similar in the three groups, while HbA1c was higher in C II and C III than in C I patients. Diabetic retinopathy was present in all C II patients (background in 50% and proliferative in 50%). None of the patients in C I and C III had proliferative retinopathy, while background retinopathy was observed in 50% of C I and 57% of C III patients. In summary, microalbuminuric NIDDM patients are structurally heterogeneous with less than one third having "typical" diabetic nephropathology. The presence of both "typical" and "atypical" patterns of renal pathology was associated with worse metabolic control, suggesting that hyperglycaemia may cause different patterns of renal injury in older NIDDM compared to younger IDDM patients.
Upon activation, neutrophils undergo histone citrullination by protein arginine deiminase (PAD)4, exocytosis of chromatin and enzymes as neutrophil extracellular traps (NETs), and death. In diabetes, neutrophils are primed to release NETs and die by NETosis. Although this process is a defense against infection, NETosis can damage tissue. Therefore, we examined the effect of NETosis on the healing of diabetic foot ulcers (DFUs). Using proteomics, we found that NET components were enriched in nonhealing human DFUs. In an independent validation cohort, a high concentration of neutrophil elastase in the wound was associated with infection and a subsequent worsening of the ulcer. NET components (elastase, histones, neutrophil gelatinase-associated lipocalin, and proteinase-3) were elevated in the blood of patients with DFUs. Circulating elastase and proteinase-3 were associated with infection, and serum elastase predicted delayed healing. Neutrophils isolated from the blood of DFU patients showed an increased spontaneous NETosis but an impaired inducible NETosis. In mice, skin PAD4 activity was increased by diabetes, and FACS detection of histone citrullination, together with intravital microscopy, showed that NETosis occurred in the bed of excisional wounds. PAD4 inhibition by Cl-amidine reduced NETting neutrophils and rescued wound healing in diabetic mice. Cumulatively, these data suggest that NETosis delays DFU healing.
Heterogeneity in renal structure has been described in t y p e 2 diabetic patients with both microalbuminuria and proteinuria; in fact, only a subset of type 2 diabetic patients have the typical diabetic glomerulopathy. Howe v e r, it is currently unknown whether abnormalities in albumin excretion rate (AER) have a different renal prognostic value depending on the underlying renal structure. Aims of this study were: 1) to study the course of renal function in type 2 diabetic patients with altered AER; 2) to evaluate the relationship between the course of glomerular filtration rate (GFR) and renal structure; and 3) to evaluate the relationship between the course of GFR and baseline AER levels, metabolic control, and blood pressure levels during a follow-up period of 4 years. A total of 108 type 2 diabetic patients, 74 with microalbuminuria (MA) and 34 with proteinuria (P), were recruited into a prospective study that encompassed: 1) a baseline kidney biopsy with morphometric measurements of glomerular parameters; 2) intensified antihypertensive treatment for an average 4-year period (blood pressure target < 1 4 0 / 9 0 mmHg); and 3) determinations of GFR at baseline and every 6 months. Mean (± SD) GFR significantly decreased from baseline in both MA (-1.3 ± 9.4 [95% CI -3.51 to +0.86], P < 0.05) and P (-3.0 ± 13.0 m l · min -1 · 1.73 m -2 per year [-7.71 to +1.61], P < 0.01). However, the changes in GFR were quite heterogeneous. Thus, on the basis of percent GFR change per year from baseline ( %GFR), both MA and P patients were defined as progressors or nonprogressors when they were below or above the median, respectively. Baseline parameters of glomerular structure had a strong influence on the course of GFR. Indeed, the odds ratios of being progressors significantly increased across the quartiles of baseline glomerular basement membrane (GBM) width and mesangial fractional volume [Vv(mes/glom)], being 2.71 and 2.85 higher, respectively, in the fourth quartile than in the first quartile (P < 0.01 for both). Conv e r s e l y, nonprogressors outnumbered progressors in the first quartile of GBM width (odds ratio: 2.14, P < 0.05) and in the first quartile of Vv(mes/glom) (odds ratio: 2.28, P < 0.01). Baseline albumin excretion rate (AER) did not influence %GFR; in fact, the number of progressors did not increase across quartiles of baseline AER among either MA or P. Similarly, mean blood pressure levels during follow-up (and intensified antihypertensive therapy) did not affect the course of GFR: the number of progressors and nonprogressors did not change across quartiles of mean blood pressure. In contrast, HbA 1 c during follow-up had an impact on % G F R : the odds ratio for being a progressor increased across quartiles of HbA 1 c , particularly for the highest quartile ( H b A 1 c >9.0%). In conclusion, the course of renal function is heterogeneous in type 2 diabetic patients with microalbuminuria or proteinuria. In fact, a subset of patients has a rapid decline in GFR over a 4-year followup period; these patient...
The minimal model is widely used to evaluate insulin action on glucose disappearance from frequently sampled intravenous glucose tolerance tests (FSIGT). The common protocols are a regular (rFSIGT, single injection of 0.3 g/kg of glucose) and an insulin-modified test (mFSIGT, with an additional insulin administration at 20 min). This study compared the insulin sensitivity index (SI) and glucose effectiveness (SG) obtained in the same individual (16 normal subjects) with the two tests. SI was 7.11 ± 0.80 10−4 ⋅ min−1 ⋅ μU−1 ⋅ ml in rFSIGT and 6.96 ± 0.83 in mFSIGT ( P = 0.656), regression r = 0.92, P < 0.0001; SG was 0.0260 ± 0.0028 min−1 and 0.0357 ± 0.0052, respectively, statistically different ( P = 0.013) but still with a good regression ( r = 0.66, P = 0.0051). SG and insulin amount during the early period correlated ( r = 0.6, P = 0.015 in rFSIGT and r = 0.76, P = 0.0006 in mFSIGT). In summary, both FSIGTs with minimal model analysis provide the same SI, which is a very robust index. SG was different by 28% due probably to the relationship between SG and the amount of circulating insulin. In studies comparing groups, the simpler rFSIGT can still be used with the advantage of accounting for endogenous insulin, thus offering the possibility of direct inferences on the β-cell activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.