Sensory evaluation, carried out by panel tests, is essential for quality classification of virgin olive oils (VOOs), but is time consuming and costly when many samples need to be assessed; sensory evaluation could be assisted by the application of screening methods. Rapid instrumental methods based on the analysis of volatile molecules might be considered interesting to assist the panel test through fast pre-classification of samples with a known level of probability, thus increasing the efficiency of quality control. With this objective, a headspace gas chromatography-ion mobility spectrometer (HS-GC-IMS) was used to analyze 198 commercial VOOs (extra virgin, virgin and lampante) by a semi-targeted approach. Different partial least squares-discriminant analysis (PLS-DA) chemometric models were then built by data matrices composed of 15 volatile compounds, which were previously selected as markers: a first approach was proposed to classify samples according to their quality grade and a second based on the presence of sensory defects. The performance (intra-day and inter-day repeatability, linearity) of the method was evaluated. The average percentages of correctly classified samples obtained from the two models were satisfactory, namely 77% (prediction of the quality grades) and 64% (prediction of the presence of three defects) in external validation, thus demonstrating that this easy-to-use screening instrumental approach is promising to support the work carried out by panel tests.
The demand for high-quality extra virgin olive oil (EVOO) is growing due to its unique characteristics. The aroma and flavor of EVOO depend on its content of volatile organic compounds (VOCs), whose formation is affected by the olive variety and maturity index, and the oil production process. In this study, the sensory quality and VOC and fatty acid (FA) profiles were determined in Arbequina olive oils produced by applying different malaxation parameters (20, 25, and 30 °C, and 30 and 45 min). All the olive oils were classified as EVOO by a sensory panel, regardless of the production conditions. However, cold extraction at 20 °C resulted in more positive sensory attributes (complexity). The FA concentration increased significantly with the malaxation temperature, although the percentage profile remained unaltered. Finally, an OPLS-DA model was generated to identify the discriminating variables that separated the samples according to the malaxation temperature. In conclusion, the tested range of malaxation parameters appeared not to degrade the distinctive attributes/organoleptic profile of olive oil and could be applied to obtain an EVOO of high sensory quality, especially at 20 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.