In this paper, we approach the problem of forecasting a time series (TS) of an electrical load measured on the Azienda Comunale Energia e Ambiente (ACEA) power grid, the company managing the electricity distribution in Rome, Italy, with an echo state network (ESN) considering two different leading times of 10 min and 1 day. We use a standard approach for predicting the load in the next 10 min, while, for a forecast horizon of one day, we represent the data with a high-dimensional multi-variate TS, where the number of variables is equivalent to the quantity of measurements registered in a day. Through the orthogonal transformation returned by PCA decomposition, we reduce the dimensionality of the TS to a lower number k of distinct variables; this allows us to cast the original prediction problem in k different one-step ahead predictions. The overall forecast can be effectively managed by k distinct prediction models, whose outputs are combined together to obtain the final result. We employ a genetic algorithm for tuning the parameters of the ESN and compare its prediction accuracy with a standard autoregressive integrated moving average model.
Detecting faults in electrical power grids is of paramount importance, both from the electricity operator and consumer point of view. Modern electric power grids (smart grids) are equipped with smart sensors that allow to gather real-time information regarding the physical status of all components belonging to the whole infrastructure (e.g., cables and related insulation, transformers, and breakers). In real-world smart grid systems, usually, additional information that are related to the operational status of the grid are collected, such as meteorological information. Designing an efficient recognition model to discriminate faults in real-world smart grid system is hence a challenging task. This follows from the heterogeneity of the information that actually determine a typical fault condition. In this paper, we deal with the problem of modeling and recognizing faults in a real-world smart grid system, which supplies the entire city of Rome, Italy. Recognition of faults is addressed by following a combined approach of dissimilarity measures learning and one-class classification techniques. We provide here an in-depth study related to the available data and to the models based on the proposed one-class classification approach. Furthermore, we perform a comprehensive analysis of the fault recognition results by exploiting a fuzzy set based decision rule
Bio-inspired algorithms like Genetic Algorithms and Fuzzy Inference Systems (FIS) are nowadays widely adopted as hybrid techniques in improving goods and services. In this paper we present an interesting application of the fuzzy-GA paradigm to the problem of energy flows management in microgrids, concerning the design, through a data driven synthesis procedure, of an Energy Management System (EMS). The main aim consists in performing decision making for power flow management tasks in the proposed microgrid model, equipped by renewable sources and an energy storage system, aiming to maximize the accounting profit in energy trading with the main-grid. In particular this study focuses on the application of a Hierarchical Genetic Algorithm (HGA) for tuning the Rule Base (RB) of a Fuzzy Inference System (FIS), trying to discover a minimal fuzzy rules set as the core inference engine of an an EMS. The HGA rationale focuses on a particular encoding scheme, based on control genes and parametric genes, applied to the optimization of the FIS parameters, allowing to perform a reduction in the structural complexity of the RB. A performance comparison is performed with a simpler approach based on a classic fuzzy-GA scheme, where both FIS parameters and rule weights are tuned, while the number of fuzzy rules is fixed in advance. Experiments shows how the fuzzy-HGA approach adopted for the synthesis of the proposed controller outperforms the classic fuzzy-GA scheme, increasing the accounting profit by 67% in the considered energy trading problem, yielding at the same time a simpler RB
The year 2020 opened with a dramatic epidemic caused by a new species of coronavirus that soon has been declared a pandemic by the WHO due to the high number of deaths and the critical mass of worldwide hospitalized patients, of order of millions. The COVID-19 pandemic has forced the governments of hundreds of countries to apply several heavy restrictions in the citizens' socio-economic life. Italy was one of the most affected countries with long-term restrictions, impacting the socio-economic tissue. During this lockdown period, people got informed mostly on Online Social Media, where a heated debate followed all main ongoing events. In this scenario, the following study presents an in-depth analysis of the main emergent topics discussed during the lockdown phase within the Italian Twitter community. The analysis has been conducted through a general purpose methodological framework, grounded on a biological metaphor and on a chain of NLP and graph analysis techniques, in charge of detecting and tracking emerging topics in Online Social Media, e.g. streams of Twitter data. A term-frequency analysis in subsequent time slots is pipelined with nutrition and energy metrics for computing hot terms by also exploiting the tweets quality information, such as the social influence of the users. Finally, a co-occurrence analysis is adopted for building a topic graph where emerging topics are suitably selected. We demonstrate via a careful parameter setting the effectiveness of the topic tracking system, tailored to the current Twitter standard API restrictions, in capturing the main sociopolitical events that occurred during this dramatic phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.