Multiphoton excited tissue fluorescence summarises the emission of all naturally occurring endogenous fluorescent bio-molecules with their often overlapping fluorescence spectra. Common fluorescence intensity measurements could not be utilised to distinguish between different fluorophores or metabolic states. To overcome this limitation, we investigated new procedures of selective melanin imaging and spectral fluorescence lifetime imaging in combination with high resolution multiphoton laser tomography. Overall 46 melanocytic lesions of human skin were analysed. We suggested that fluorescence light, detected in such a way, may yield additional information for melanoma diagnostics. Remarkable differences in lifetime behaviour of keratinocytes in contrast to melanocytes were observed. Fluorescence lifetime distribution was found in correlation with the intracellular amount of melanin. Spectral analysis of melanoma revealed a main fluorescence peak around 470 nm in combination with an additional peak close to 550 nm throughout all epidermal layers. Excitation at 800 nm shows a selectively observable fluorescence of melanin containing cells and offers the possibility of cell classification. Procedures of selective imaging as well as spectral fluorescence lifetime imaging by means of multiphoton laser tomography support diagnostic decisions and may improve the process of non-invasive early detection of melanoma.Key words: melanoma -melanocytic skin lesions -multiphoton laser tomography -selective melanin imaging -spectral fluorescence lifetime imaging Please cite this paper as: Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis.
The incidence of malignant melanoma has shown a dramatic increase over the past three decades. Patient outcome and curability depend on early diagnosis. In vivo multiphoton laser tomography represents a recently developed diagnostic tool that allows non-invasive tissue imaging. We aim to demonstrate the application of multiphoton laser tomography for the in vivo differentiation and diagnosis of melanoma. Laser radiation in the near infrared spectrum was used to image endogenous fluorophores by multiphoton excitation. Eighty-three melanocytic skin lesions have been investigated. The results showed distinct morphological differences in melanoma compared with melanocytic nevi. In particular, six characteristic features of malignant melanoma were specified and statistically evaluated. Sensitivity values up to 95% (range: 71-95%) and specificity values up to 97% (range: 69-97%) were achieved for diagnostic classification. Logistic regression analysis was performed to identify the most significant diagnostic criteria. We found that architectural disarray of the epidermis, poorly defined keratinocyte cell borders as well as the presence of pleomorphic or dendritic cells were of prime importance. By means of this procedure accuracy values up to 97% were reached. These findings underline the potential applicability of multiphoton laser tomography in melanoma diagnosis of melanocytic skin lesions.
Multiphoton optical tomography provides non-invasive optical sectioning of skin with high spatial and intracellular resolution. The imaging system DermaInspect based on femtosecond laser pulses and equipped with a SPC 830 card for FLIM analysis was used to perform this technique in vivo in clinical studies on patients with abnormal pigmented tissues. After examination in vivo, biopsies were taken and analyzed again. So far it was possible to distinguish between normal and diseased tissues mainly due to their different morphological appearances in the imaging mode: melanoma tissues show differences in the structure of the epidermal layers and the presence of dendritic cells compared to normal skin. The optical analysis can be improved when using the system in the time-correlated single photon counting mode. Fluorescence lifetime analysis reveals characteristic differences between healthy and melanoma tissues even before the visible morphological changes in human tissue in vivo.
The multiphoton tomograph DermaInspect was used to perform first clinical studies on the early non-invasive detection of skin cancer based on non-invasive optical sectioning of skin by two-photon autofluorescence and second harmonic generation. In particular, deep-tissue pigmented lesions -nevi-have been imaged with intracellular resolution using near infrared (NIR) femtosecond laser radiation. So far, more than 250 patients have been investigated. Cancerous tissues showed significant morphological differences compared to normal skin layers. In the case of malignant melanoma, the occurrence of luminescent melanocytes has been detected. Multiphoton tomography will become a novel non-invasive method to obtain high-resolution 3D optical biopsies for early cancer detection, treatment control, and in situ drug screening.
Multiphoton optical tomography provides the capability of non-invasive optical sectioning of skin with high spatial and intracellular resolution as well as high NIR (near infrared) light penetration into pigmented skin areas. The imaging system DermaInspect based on femtosecond laser pulses was used to perform multiphoton optical tomography in clinical studies. Patients with abnormal pigmented tissues were imaged in vivo. After the multiphoton imaging procedure, biopsies were taken, imaged again and further processed with standard histological methods. We report on preliminary results. The visualization of pigmented cell clusters based on non-linear luminescence using the novel multiphoton device was possible. These clusters could be clearly distinguished from non-pigmented cells. Cancerous tissues showed significant differences in the cell structure of the epidermal layers. The system DermaInspect might become a high resolution diagnostic tool for melanoma diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.