International audienceWhile OLAP has a key role in supporting effective exploration of multidimensional cubes, the huge number of aggregations and selections that can be operated on data may make the user experience disorientating. To address this issue, in the paper we propose a recommendation approach stemming from collaborative filtering. We claim that the whole sequence of queries belonging to an OLAP session is valuable because it gives the user a compound and synergic view of data; for this reason, our goal is not to recommend single OLAP queries but OLAP sessions. Like other collaborative approaches, ours features three phases: (i) search the log for sessions that bear some similarity with the one currently being issued by the user; (ii) extract the most relevant subsessions; and (iii) adapt the top-ranked subsession to the current user's session. However, it is the first that treats sessions as first-class citizens, using new techniques for comparing sessions, finding meaningful recommendation candidates, and adapting them to the current session. After describing our approach, we discuss the results of a large set of effectiveness and efficiency tests based on different measures of recommendation quality
In document-oriented databases, schema is a soft concept and the documents in a collection can be stored using different local schemata. This gives designers and implementers augmented flexibility; however, it requires an extra effort to understand the rules that drove the use of alternative schemata when sets of documents with different -and possibly conflicting-schemata are to be analyzed or integrated. In this paper we propose a technique, called schema profiling, to explain the schema variants within a collection in document-oriented databases by capturing the hidden rules explaining the use of these variants. We express these rules in the form of a decision tree (schema profile). Consistently with the requirements we elicited from real users, we aim at creating explicative, precise, and concise schema profiles. The algorithm we adopt to this end is inspired by the well-known C4.5 classification algorithm and builds on two original features: the coupling of value-based and schema-based conditions within schema profiles, and the introduction of a novel measure of entropy to assess the quality of a schema profile. A set of experimental tests made on both synthetic and real datasets demonstrates the effectiveness and efficiency of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.