Rectified Linear Units (ReLU) have become the main model for the neural units in current deep learning systems. This choice has been originally suggested as a way to compensate for the so called vanishing gradient problem which can undercut stochastic gradient descent (SGD) learning in networks composed of multiple layers. Here we provide analytical results on the effects of ReLUs on the capacity and on the geometrical landscape of the solution space in two-layer neural networks with either binary or real-valued weights. We study the problem of storing an extensive number of random patterns and find that, quite unexpectedly, the capacity of the network remains finite as the number of neurons in the hidden layer increases, at odds with the case of threshold units in which the capacity diverges. Possibly more important, a large deviation approach allows us to find that the geometrical landscape of the solution space has a peculiar structure: While the majority of solutions are close in distance but still isolated, there exist rare regions of solutions which are much more dense than the similar ones in the case of threshold units. These solutions are robust to perturbations of the weights and can tolerate large perturbations of the inputs. The analytical results are corroborated by numerical findings. arXiv:1907.07578v3 [cond-mat.dis-nn]
The traveling-salesman problem is one of the most studied combinatorial optimization problems, because of the simplicity in its statement and the difficulty in its solution. We characterize the optimal cycle for every convex and increasing cost function when the points are thrown independently and with an identical probability distribution in a compact interval. We compute the average optimal cost for every number of points when the distance function is the square of the Euclidean distance. We also show that the average optimal cost is not a self-averaging quantity by explicitly computing the variance of its distribution in the thermodynamic limit. Moreover, we prove that the cost of the optimal cycle is not smaller than twice the cost of the optimal assignment of the same set of points. Interestingly, this bound is saturated in the thermodynamic limit.
We consider two formulations of the random-link fractional matching problem, a relaxed version of the more standard random-link (integer) matching problem. In one formulation, we allow each node to be linked to itself in the optimal matching configuration. In the other one, on the contrary, such a link is forbidden. Both problems have the same asymptotic average optimal cost of the random-link matching problem on the complete graph. Using a replica approach and previous results of Wästlund [1], we analytically derive the finitesize corrections to the asymptotic optimal cost. We compare our results with numerical simulations and we discuss the main differences between random-link fractional matching problems and the random-link matching problem.
We analytically derive, in the context of the replica formalism, the first finite size corrections to the average optimal cost in the random assignment problem for a quite generic distribution law for the costs. We show that, when moving from a power-law distribution to a Γ distribution, the leading correction changes both in sign and in its scaling properties. We also examine the behavior of the corrections when approaching a δ-function distribution. By using a numerical solution of the saddle-point equations, we provide predictions that are confirmed by numerical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.