To throw light onto the mechanism(s) by which the cholinergic system influences growth hormone (GH) release, the effects of two muscarinic receptor blockers, pirenzepine and atropine, and of an acetylcholinesterase inhibitor, pyridostigmine bromide, on the GH response to GHRH-44 were studied in 19 normal volunteers. Moreover, the effects of pirenzepine administration on plasma GH levels both in basal conditions and after stimulation by GHRH-44 and TRH were studied in 9 acromegalics. Both pirenzepine (0.6 mg/kg i.v., 5 min before GHRH) and atropine (1 mg i.m., 15 min before GHRH) blunted the GH response to GHRH (1 µg/kg i.v. bolus) (area under the response curve, AUC: 81.3 ± 17.3 vs. 481.2 + 211.3 ng/ml/h for pirenzepine and 100.2 ± 27.0 vs. 364.7 + 81.0 ng/ml/h for atropine; p < 0.01). Pyridostigmine (120 mg orally, 30 min before GHRH) induced a variable but significant (p < 0.02) rise in basal plasma GH levels and, furthermore, an unequivocal potentiation of the GH response to GHRH (AUC: 1044.6 + 245.3 vs. 481.2 + 211.3 ng/ml/h; p
Abstract. It is known that in normal subjects repeated administrations of the growth hormone-releasing factor (GRF) induces a state of partial refractoriness of the somatotropes to GRF. Studies were conducted to verify whether the cholinergic system plays a role in the mechanism(s) underlying the reduced GH responsiveness to the neuropeptide. In five healthy men, the GH response to three consecutive injections of GRF (50 μg iv), administered at 2 h intervals, was considerably blunted after the second and third GRF bolus. Administration of the inhibitor of cholinesterase, pyridostigmine bromide (120 mg orally) 30 min before the second GRF bolus, not only restored but greatly potentiated the GH responsiveness to the second GRF bolus. The GH response to the third GRF bolus was not apparently influenced by pre-treatment with pyridostigmine. These data reinforce the view that cholinergic neurotransmission plays an important role in the control of GH secretion in human.
At present, the mechanism(s) underlying the reduced spontaneous and stimulated GH secretion in aging is still unclear. To obtain new information on this mechanism(s), the GH responses to both single and combined administration of GH-releasing hormone (GHRH; 1 microgram/kg iv) and arginine (ARG; 30 g infused over 30 min), a well known GH secretagogue probably acting via inhibition of hypothalamic somatostatin release, were studied in seven elderly normal subjects and seven young healthy subjects. Basal GH levels were similar in both groups, while insulin-like growth factor-I levels were lower in elderly subjects (76.7 +/- 9.2 vs. 258.3 +/- 29.2 micrograms/L; P = 0.01). In aged subjects GHRH induced a GH increase (area under the curve, 314.9 +/- 91.9 micrograms/L.h) which was lower (P = 0.01) than that in young subjects (709.1 +/- 114.4 micrograms/L.h). On the other hand, the ARG-induced GH increase in the elderly was not significantly different from that in young subjects (372.8 +/- 81.8 vs. 470.6 +/- 126.5 micrograms/L.h). ARG potentiated GH responsiveness to GHRH in both elderly (1787.1 +/- 226.0 micrograms/L.h; P = 0.0001 vs. GHRH alone) and young subjects (2113.0 +/- 444.3 micrograms/L.h; P = 0.001 vs. GHRH alone). The potentiating effect of ARG on the GHRH-induced GH response was greater in elderly than in young subjects (1013.0 +/- 553.5% vs. 237.9 +/- 79.1%; P = 0.0001); thus, the GH increase induced by combined administration of ARG and GHRH overlapped in two groups. In conclusion, these results show that, differently from the GHRH-induced GH increase, the somatotroph response to combined administration of ARG and GHRH does not vary with age. Our finding suggests that an increased somatostatinergic activity may underlie the reduced GH secretion in normal aging.
To investigate the mechanism underlying the GH-releasing effect of arginine (ARG), we studied the interactions of ARG (0.5 g/kg infused i.v. over 30 min) with GHRH (1 microgram/kg i.v.) and with pyridostigmine (PD, 60 mg orally) on GH secretion in 15 children and adolescents with familial short stature (5.1-15.4 years). In a group of eight subjects ARG induced a GH increase not statistically different to that observed after GHRH (peak, mean +/- SEM: 38.0 +/- 10.4 vs 64.0 +/- 14.4 mU/l). The combined administration of ARG and GHRH led to GH levels (101 +/- 15.2 mU/l) higher than those observed after GHRH (P less than 0.025) or ARG alone (P less than 0.001) and overlapping with those recorded after combined PD and GHRH administration (111 +/- 22.4 mU/l). In the other seven subjects, ARG and PD administration induced a similar GH response either when administered alone (25.2 +/- 13.6 and 27.8 +/- 4.0 mU/l, respectively) or in combination (33.8 +/- 5.4 mU/l). In conclusion, our results show that in children ARG administration potentiates GHRH- but not PD-induced GH increase. These findings agree with the hypothesis that the GH-releasing effect of both ARG and PD is mediated via the same mechanism, namely, by suppression of endogeneous somatostatin release. Combined administration of either ARG or PD with GHRH has a similar striking GH-releasing effect which is clearly higher than that of GHRH alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.