Abstract. While tags in collaborative tagging systems serve primarily an indexing purpose, facilitating search and navigation of resources, the use of the same tags by more than one individual can yield a collective classification schema. We present an approach for making explicit the semantics behind the tag space in social tagging systems, so that this collaborative organization can emerge in the form of groups of concepts and partial ontologies. This is achieved by using a combination of shallow pre-processing strategies and statistical techniques together with knowledge provided by ontologies available on the semantic web. Preliminary results on the del.icio.us and Flickr tag sets show that the approach is very promising: it generates clusters with highly related tags corresponding to concepts in ontologies and meaningful relationships among subsets of these tags can be identified.
Semantic search promises to produce precise answers to user queries by taking advantage of the availability of explicit semantics of information in the context of the semantic web. Existing tools have been primarily designed to enhance the performance of traditional search technologies but with little support for naive users, i.e., ordinary end users who are not necessarily familiar with domain specific semantic data, ontologies, or SQL-like query languages. This paper presents SemSearch, a search engine, which pays special attention to this issue by hiding the complexity of semantic search from end users and making it easy to use and effective. In contrast with existing semantic-based keyword search engines which typically compromise their capability of handling complex user queries in order to overcome the problem of knowledge overhead, SemSearch not only overcomes the problem of knowledge overhead but also supports complex queries. Further, SemSearch provides comprehensive means to produce precise answers that on the one hand satisfy user queries and on the other hand are self-explanatory and understandable by end users. A prototype of the search engine has been implemented and applied in the semantic web portal of our lab. An initial evaluation shows promising results.
Abstract. While current approaches to ontology mapping produce good results by mainly relying on label and structure based similarity measures, there are several cases in which they fail to discover important mappings. In this paper we describe a novel approach to ontology mapping, which is able to avoid this limitation by using background knowledge. Existing approaches relying on background knowledge typically have one or both of two key limitations: 1) they rely on a manually selected reference ontology; 2) they suffer from the noise introduced by the use of semi-structured sources, such as text corpora. Our technique circumvents these limitations by exploiting the increasing amount of semantic resources available online. As a result, there is no need either for a manually selected reference ontology (the relevant ontologies are dynamically selected from an online ontology repository), or for transforming background knowledge in an ontological form. The promising results from experiments on two real life thesauri indicate both that our approach has a high precision and also that it can find mappings, which are typically missed by existing approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.