Document classification is the process of categorizing documents from many mixed files automatically [1]. In this paper, an approach to classification of documents for admin-case files of Philippine National Police (PNP) using Latent Semantic Indexing (LSI) method is proposed. The model for this that represents term-to-term, document-todocument and term-to-document relationships has been applied. Regular Expression is implemented also to define a search pattern based on character strings which the LSI used to establish the semantic relevance of the character strings to the search term or keyword. The aim of the study is to evaluate the performance of LSI in classifying PNP documents; experimentation was done using software to test the capability of LSI towards text retrieval. Indexing is according to the pattern matched in the collection of text that uses model of SVD. Based on tests, documents were indexed based on file relationships and was able to return a search result as the retrieved information from PNP files. Weights are used to check the accuracy of the method; the positive values identified in query similarity are regarded as the most relevant among the related searches, meaning, the query word matches words in a text file and it returns a query result.
The research study is about the enhancement of symmetric cryptosystem. It gives support to integrity of data and information security, message non-repudiation, and key management scheme of the conventional symmetric cryptosystem.This research applied different techniques and methodologies which were successfully utilized on other cryptosystems. These techniques were also known for its long time implementations in giving support to key management, data integrity verification and message non-repudiation of the symmetric cryptosystem.Also, this study compared the enhanced symmetric cryptosystem to the existing symmetric cryptosystem to emphasize their significant difference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.