Silica nanoparticles are versatile platforms with many intrinsic features, such as low toxicity. Proper design and derivatization yields particularly stable colloids, even in physiological conditions, and provides them with multiple functions. A suitable choice of dyes and synthetic strategy may, in particular, yield a very bright nanosystem. Silica nanoparticles thus offer unique potential in the nanotechnology arena, and further improvement and optimization could substantially increase their application in fields of high social and economic impact, such as medical diagnostics and therapy, environmental and food analysis, and security. This paper describes silica-based, multicomponent nanosystems with intrinsic directional energy- and electron-transfer processes, on which highly valued functions like light harvesting and signal amplification are based.
The ability to find synergic solutions is the core of scientific research and scientific advancement. This is particularly true for medicine, where multimodal imaging and theranostic tools represent the frontier research. Nanotechnology, which by its very nature is multidisciplinary, has opened up the way to the engineering of new organized materials endowed with improved performances. In particular, merging nanoparticles and luminescent signalling can lead to the creation of unique tools for the design of inexpensive, hand-held diagnostic and theranostic kits. In this wide scenario, dye-doped silica nanoparticles constitute very effective nanoplatforms to obtain efficient luminescent, stable, biocompatible and targeted agents for biomedical applications. In this review we discuss the state of the art in the field of luminescent silica-based nanoparticles for medical imaging, starting with an overview of the most common synthetic approaches to these materials. Trying to rationalize the presentation of this extremely multifaceted and complex subject, we have gathered significant examples of systems applied in cancer research, also discussing those that take a multifunctional approach, including theranostic structures. Nanoprobes designed for applications that do not include cancer are a minor part, but interesting achievements have been published and we present a selection of these in the subsequent section. To conclude, we propose a debate on the advantages of creating chemosensors based on luminescent silica nanoparticles. This is far from easy but is a particularly valuable goal in the medical field and therefore subject to extensive research worldwide.
The electrochemiluminescence (ECL) of doped silica nanoparticles (DSNPs), prepared by a reverse microemulsion method that leads to covalent incorporation of the Ru(bpy)(3)(2+), was investigated in acetonitrile and aqueous buffers. The emission was produced for the first time by cation-anion direct annihilation, and the position of ECL maxima indirectly allowed estimation of the E(1/2,IOx) and E(1/2,IRed) potentials for Ru(bpy)(3) inside DSNPs. The weak ECL emission is most likely generated by an intrananoparticle ruthenium unit annihilation rather than by the electron transfer between a reduced and oxidized DSNP due to the very low diffusivities of the nanoparticles. Thiol-terminated DSNPs were self-assembled on gold substrates, forming compact and stable monolayers which mimic probe-target assays with DSNPs as labels. The ECL intensity obtained by such functionalized substrates in aqueous media, using tripropylamine (TPrA) as coreactant, was surprisingly increased with respect to direct electrochemical oxidation because of the ability of oxidized TPrA to diffuse within the DSNPs structure and reach a higher number of emitting units with respect to direct electron tunneling. The experimental results have been explained by proposing a basic physical-chemical model which supports evaluation of the number of redox-active centers per nanoparticle. In the model the contrasting effects of increased luminescence quantum yield and decreased diffusion coefficient with respect to free (i.e., not bound within the silica structure) emitting molecules were taken into account. This allows, in principle, optimizing the ECL emission intensity as a function of DSNP size, doping material, charge, doping level, supporting electrolyte, electrode material, and solvent. Finally, it is worth noting that this study has provided a more than 1000-fold increase of the ECL signal of a chemically and electrochemically stable DSNP compared to that of a single dye, suggesting that use of this kind of nanostructures as luminescent labels represents a very promising system for ultrasensitive bioanalysis.
Nanotechnology has recently allowed us to design and prepare nanoplatforms with the potential to face currently unresolved problems. Among these platforms, nanoparticles in particular are versatile objects that find applications in many different areas. In the vast ensemble of materials that have been explored to obtain nanoparticles with improved performances, we here focus our attention on lanthanide-based nanocrystals. These recently developed species are extremely interesting and well known particularly for their ability to emit anti-Stokes shifted light (upconversion) with relatively high brightness. Many advantageous characteristics of such materials are emerging, and their use as multimodal imaging agents is rapidly growing. We here survey some recent examples on this subject, mainly focusing on systems having NIR-to-NIR emission properties for in vivo applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.