The merit of using supercritical CO 2{scC0 2) as the working fluid of a closed Bray ton cycle gas turbine is now widely recognized, and the development of this technology is now actively pursued. SCCO2 gas turbine power plants are an attractive option for solar, geothermal, and nuclear energy conversion. Among the challenges that must be overcome in order to successfully bring the technology to the market is that the efficiency of the compressor and turbine operating with the supercritical fluid should be increased as much as possible. High efficiency can be reached by means of sophisticated aerodynamic design, which, compared to other overall efficiency improvements, like cycle maximum pressure and temperature increase, or increase of recuperator effectiveness, does not require an increase in equipment cost, but only an additional effort in research and development. This paper reports a three-dimensional computational fluid dynamics (CFD) study of a high-speed centrifugal compressor operating with CO2 in the thermodynamic region slightly above the vapor-liquid critical point. The investigated geometry is the compressor impeller tested in the Sandia SCCO2 compression loop facility. The fluid dynamic simulations are performed with a fully implicit parallel Reynolds-averaged Navier-Stokes code based on a finite volume formulation on arbitrary polyhedral mesh elements. In order to account for the strongly nonlinear variation of the thermophysical properties of supercritical CO2, the CFD code is coupled with an extensive library for the computation of properties of fiuids and mixtures. A specialized look-up table approach and a meshing technique suited for turbomachinery geometries are also among the novelties introduced in the developed methodology. A detailed evaluation of the CFD results highlights the challenges of numerical studies aimed at the simulation of technically relevant compressible flows occurring close to the liquid-vapor critical point. The data of the obtained flow field are used for a comparison with experiments performed at the Sandia SCCO2 compression-loop facility.A parallel solver for the solution of the compressible Navier-Stokes equations on unstructured meshes based on a finite volume formulation and implicit time-integration on arbitrary polyhedral meshes has been used. The code solves the Favre-averaged Navier-Stokes equations and is entirely written in C-I-4-and uses subdomain decomposition and the Message Passing Interface as the parallel infrastructure [8,9]. Two different turbulence models are implemented in the code, namely the one-equation eddy viscosity model of Spalart and AUmaras [10] and the twoequation k-o] shear-stress-transport (SST) turbulence model of Menter [11]. Journal of Engineering for Gas Turbines and Power
Isolated patches of turbulence in transitional straight pipes are sustained by a strong instability at their upstream front, where the production of turbulent kinetic energy (TKE) is up to five times higher than in the core. Direct numerical simulations presented in this paper show no evidence of such strong fronts if the pipe is bent. We examine the temporal and spatial evolution of puffs and slugs in a toroidal pipe with pipe-to-torus diameter ratio δ = D/d = 0.01 at several subcritical Reynolds numbers. Results show that the upstream overshoot of TKE production is at most one-and-a-half times the value in the core and that the average cross-flow fluctuations at the front are up to three times lower if compared to a straight pipe, while attaining similar values in the core. Localised turbulence can be sustained at smaller energies through a redistribution of turbulent fluctuations and vortical structures by the in-plane Dean motion of the mean flow. This asymmetry determines a strong localisation of TKE production near the outer bend, where linear and nonlinear mechanisms optimally amplify perturbations. We further observe a substantial reduction of the range of Reynolds numbers for longlived intermittent turbulence, in agreement with experimental data from the literature. Moreover, no occurrence of nucleation of spots through splitting could be detected in the range of parameters considered. Based on the present results, we argue that this mechanism gradually becomes marginal as the curvature of the pipe increases and the transition scenario approaches a dynamical switch from subcritical to supercritical.
The performance map of a radial compressor operating with supercritical CO2 is computed by means of three-dimensional steady state Reynolds-averaged Navier–Stokes simulations. The geometry investigated is part of a 250 kW prototype which was tested at Sandia National Laboratories (SNL). An in-house fluid dynamic solver is coupled with a lookup table algorithm to evaluate the fluid properties. Tables are generated using a multiparameter equation of state, which ensures high accuracy in the fluid characterization. The compressor map is calculated considering three different rotational speeds (45 krpm, 50 krpm, and 55 krpm). For each speed-line, several mass flow rates are simulated. Numerical results are compared to experimental data from SNL to prove the potential of the methodology.
In this Letter we show that a bifurcation cascade and fully sustained turbulence can share the phase space of a fluid flow system, resulting in the presence of competing stable attractors. We analyse the toroidal pipe flow, which undergoes subcritical transition to turbulence at low pipe curvatures (pipe-to-torus diameter ratio) and supercritical transition at high curvatures, as was previously documented. We unveil an additional step in the bifurcation cascade and provide evidence that, in a narrow range of intermediate curvatures, its dynamics competes with that of sustained turbulence emerging through subcritical transition mechanisms.
Organic Rankine cycle (ORC) turbogenerators are the most viable option to convert sustainable energy sources in the low-to-medium power output range (from tens of kWe to several MWe). The design of efficient ORC turbines is particularly challenging due to their inherent unsteady nature (high expansion ratios and low speed of sound of organic compounds) and to the fact that the expansion encompasses thermodynamic states in the dense vapor region, where the ideal gas assumption does not hold. This work investigates the unsteady nonideal fluid dynamics and performance of a high expansion ratio ORC turbine by means of detailed Reynolds-averaged Navier–Stokes (RANS) simulations. The complex shock interactions resulting from the supersonic flow (M ≈ 2.8 at the vanes exit) are related to the blade loading, which can fluctuate up to 60% of the time-averaged value. A detailed loss analysis shows that shock-induced boundary layer separation on the suction side of the rotor blades is responsible for most of the losses in the rotor, and that further significant contributions are given by the boundary layer in the diverging part of the stator and by trailing edge losses. Efficiency loss due to unsteady interactions is quantified in 1.4% in absolute percentage points at design rotational speed. Thermophysical properties are found to feature large variations due to temperature even after the strong expansion in the nozzle vanes, thus supporting the use of accurate fluid models in the whole turbine stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.