Reliable automated identification and susceptibility testing of clinically relevant bacteria is an essential routine for microbiology laboratories, thus improving patient care. Examples of automated identification systems include the Phoenix (Becton Dickinson) and the VITEK 2 (bioMérieux). However, more and more frequently, microbiologists must isolate "difficult" strains that automated systems often fail to identify. An alternative approach could be the genetic identification of isolates; this is based on 16S rRNA gene sequencing and analysis. The aim of the present study was to evaluate the possible use of MicroSeq 500 (Applera) for sequencing the 16S rRNA gene to identify isolates whose identification is unobtainable by conventional systems. We analyzed 83 "difficult" clinical isolates: 25 gram-positive and 58 gram-negative strains that were contemporaneously identified by both systems-VITEK 2 and Phoenix-while genetic identification was performed by using the MicroSeq 500 system. The results showed that phenotypic identifications by VITEK 2 and Phoenix were remarkably similar: 74% for gram-negative strains (43 of 58) and 80% for gram-positive strains were concordant by both systems and also concordant with genetic characterization. The exceptions were the 15 gram-negative and 9 gram-positive isolates whose phenotypic identifications were contrasting or inconclusive. For these, the use of MicroSeq 500 was fundamental to achieving species identification. In clinical microbiology the use of MicroSeq 500, particularly for strains with ambiguous biochemical profiles (including slow-growing strains), identifies strains more easily than do conventional systems. Moreover, MicroSeq 500 is easy to use and cost-effective, making it applicable also in the clinical laboratory.Since the time when microbial identification (ID) was performed by using tube tests, much progress has been made. Initially, to assist microbiologists, miniaturized ID systems appeared, followed by innovative automatic ID systems such as VITEK 2 (bioMérieux, Marcy l'Étoile, France) and Phoenix (Becton Dickinson Microbiology Systems, Cockeysville, Md.) (1, 9). These are new, fully automated systems that provide accurate and reproducible IDs, as well as antimicrobial susceptibility tests. The systems possess either sophisticated software to identify microorganism phenotypes or "advanced expert systems" able to elaborate and validate the antimicrobial susceptibilities of the isolates (1, 2, 6, 7, 9, 10). In spite of the undoubtedly innovative results obtained with the widespread use of these automated systems, they do have some drawbacks, particularly when microbiologists need to identify microorganisms exhibiting biochemical features that do not fit into any known patterns of genus and species. These unusual isolates are quite common, especially when we consider that more and more strains isolated from patients that have undergone longterm antimicrobial therapy (such as hematological patients and those in intensive care units) can lose their typical b...
The recognition of the role of Helicobacter pylori in gastric diseases has led to the widespread use of antibiotics in the eradication of this pathogen. The most advocated therapy, triple therapy, often includes clarithromycin. It is well known that clarithromycin resistance is one of the major causes of eradication failure. The development of a rapid noninvasive technique that could easily be performed on fecal samples and that could also provide information about the antibiotic resistance of this microorganism is therefore advisable. Previous findings have demonstrated that clarithromycin resistance is due to a single point mutation in the 23S rRNA. All the mutations described have been associated with specific restriction sites, namely BsaI (A2143G), MboII (A2142C/G), and HhaI (T2717C). On this basis we have developed a new method, a seminested PCR, allowing screening for clarithromycin resistance of H. pylori directly on stool samples. This method furnished a 783-bp fragment of the 23S rRNA, which was subsequently digested by MboII, BsaI, and HhaI, in order to identify single point mutations associated with clarithromycin resistance. Of a total of 283 stool samples examined, 125 were H. pylori positive and two of them were shown to contain clarithromycin-resistant strains due to the presence of a mutation at position 2717, whereas no PCR products contained mutations at position 2142 or 2143. In order to evaluate the reliability of the new system, we compared the results of restriction analysis of the PCR products with the MICs shown by the H. pylori isolates by culturing gastric biopsies from the same patients.
AIM: Aspergillus fumigatus is the most common opportunistic fungal pathogen and causes invasive pulmonary aspergillosis (IPA), with high mortality among immunosuppressed patients. Fungistatic activity of all-trans retinoic acid (ATRA) has been recently described in vitro. We evaluated the efficacy of ATRA in vivo and its potential synergistic interaction with other antifungal drugs. MATERIALS AND METHODS: A rat model of IPA and in vitro experiments were performed to assess the efficacy of ATRA against Aspergillus in association with classical antifungal drugs and in silico studies used to clarify its mechanism of action. RESULTS: ATRA (0.5 and 1 mM) displayed a strong fungistatic activity in Aspergillus cultures, while at lower concentrations, synergistically potentiated fungistatic efficacy of sub-inhibitory concentration of Amphotericin B (AmB) and Posaconazole (POS). ATRA also enhanced macrophagic phagocytosis of conidia. In a rat model of IPA, ATRA reduced mortality similarly to Posaconazole. CONCLUSION: Fungistatic efficacy of ATRA alone and synergistically with other antifungal drugs was documented in vitro, likely by inhibiting fungal Hsp90 expression and Hsp90-related genes. ATRA reduced mortality in a model of IPA in vivo. Those findings suggest ATRA as suitable fungistatic agent, also to reduce dosage and adverse reaction of classical antifungal drugs, and new therapeutic strategies against IPA and systemic fungal infections.
In order to correctly identify a new biovar of Staphylococcus aureus subsp, aureus, (NBSA) a simple, rapid, and reliable enzymatic assay was developed. The assay was based on the detection of the production of three enzymes: alpha-glucosidase, beta-glucosidase and beta-N-acetyl-glucosaminidase. Of a total of 46 isolates of Staphylococcus aureus subsp. aureus from clinical specimens, the new assay correctly identified 19 as NBSA and 27 as typical Staphylococcus aureus subsp. aureus. Among the 19 NBSA isolates, 15 (79%) showed a clear biochemical profile while only four isolates (21%) showed a less well-defined enzymatic combination, due to a phenotypic alteration caused by subculturing. Since this assay is both simple to perform and inexpensive, it is potentially applicable in the laboratory.
Even with good surveillance programmes, hospital-acquired infections (HAIs) are not always recognized and this may lead to an outbreak. In order to reduce this risk, we propose a model for prompt detection of HAIs, based on the use of a real-time epidemiological information system called VIGI@ct (bioMèrieux, Las Balmas, France) and on the rapid confirmation or exclusion of the genetic relationship among pathogens using fluorescent amplified length fragment polymorphism (f-AFLP) microbial fingerprinting. We present the results of one year's experience with the system, which identified a total of 306 suspicious HAIs. Of these, 281 (92%) were 'confirmed' by clinical evidence, 16 (5%) were considered to be simple colonization and the latter nine (3%) were archived as 'not answered' because of the absence of the physician's cooperation. There were seven suspected outbreaks; of these, f-AFLP analysis confirmed the clonal relationship among the isolates in four cases: outbreak 1 (four isolates of Pseudomonas aeruginosa), outbreak 2 (three Escherichia coli isolates), outbreak 6 (two Candida parapsilosis isolates) and outbreak 7 (30 ESbetaL-producing Klebsiella pneumoniae subsp. pneumoniae). Based on our results, we conclude that the combination of VIGI@ct and f-AFLP is useful in the rapid assessment of an outbreak due to Gram-positive or Gram-negative bacteria and yeasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.