A single step process for the deposition of nanocomposite coatings with silver nanoparticles (AgNPs) embedded in a plasma-polymerized polyacrylic acid (pPAA) matrix and performed using a non-equilibrium atmospheric pressure plasma jet is presented. Acrylic acid (AA) and AgNPs dispersed in ethanol (EtOH) are used as precursors and are separately injected in the plasma region directly; Ar is used as plasma gas and also as carrier gas for both precursors. Scanning electron microscopy (SEM) and ATR-FTIR analysis show the deposition of a micrometric pPAA coating on the polyethylene (PE) film used as substrate; AgNPs embedded in the polymeric matrix are visible in SEM pictures and their presence is confirmed by XPS and EDS analysis. X-ray photoelectron spectroscopy (XPS) also highlights a high retention of carboxylic groups in the pPAA chemical structure and the surface oxidation of AgNPs. Preliminary results of the antibacterial activity of the co-deposited coatings are presented.
Based on the comparison of simulative and experimental data, an approach is presented for the design and optimization of processes assisted by low power atmospheric pressure Radio Frequency (RF) thermal plasmas. High Speed Imaging (HSI), Schlieren Imaging (SI), and temperature measurement on the surface of the substrate are performed to characterize the effect of the interaction of the RF torch effluent with a substrate placed downstream of the torch outlet. The related processes are simulated in 2‐D axisymmetric and 3‐D domains for different operating conditions, for the plasma generation region and for the downstream region, respectively. The comparison of numerical and experimental results is used to in depth characterize and investigate the behavior of the effluent of the RF torch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.