In this work, a real-time collision avoidance algorithm was presented for autonomous navigation in the presence of fixed and moving obstacles in building environments. The current implementation is designed for autonomous navigation between waypoints of a predefined flight trajectory that would be performed by an UAV during tasks such as inspections or construction progress monitoring. It uses a simplified geometry generated from a point cloud of the scenario. In addition, it also employs information from 3D sensors to detect and position obstacles such as people or other UAVs, which are not registered in the original cloud. If an obstacle is detected, the algorithm estimates its motion and computes an evasion path considering the geometry of the environment. The method has been successfully tested in different scenarios, offering robust results in all avoidance maneuvers. Execution times were measured, demonstrating that the algorithm is computationally feasible to be implemented onboard an UAV.
In this work, a Detect and Avoid system is presented for the autonomous navigation of Unmanned Aerial Vehicles (UAVs) in Urban Air Mobility (UAM) applications. The current implementation is designed for the operation of multirotor UAVs in UAM corridors. During the operations, unauthorized flying objects may penetrate the corridor airspace posing a risk to the aircraft. In this article, the feasibility of using a solid-state LiDAR (Light Detecting and Ranging) sensor for detecting and positioning these objects was evaluated. For that purpose, a commercial model was simulated using the specifications of the manufacturer along with empirical measurements to determine the scanning pattern of the device. With the point clouds generated by the sensor, the system detects the presence of intruders and estimates their motion to finally compute avoidance trajectories using a Second Order Cone Program (SOCP) in real time. The method was tested in different scenarios, offering robust results. Execution times were of the order of 50 milliseconds, allowing the implementation in real time on modern onboard computers.
The inspection and maintenance of track ballast are fundamental tasks for the preservation of the condition of railway networks. This work presents an application based on a low-cost solid-state LiDAR system, which allows the user to accurately measure the ballast geometry from a mobile inspection trolley or draisine. The solid-state LiDAR system, the LiVOX Avia, was validated on a test track through comparison with a traditional static LiDAR system, the Faro Focus 3D. The results show a standard deviation of around 6 mm for the solid-state LiDAR system. The LiVOX system also provides the capability to measure the ballast digital elevation model and profiles. The LiVOX results are in agreement with those obtained from the Faro Focus. The results demonstrate that the LiVOX system can sufficiently measure even the displacement of a single layer of ballast stones typically between 2.5 cm and 5 cm. The data provided can be easily digitalized using image processing tools and integrated into geographic information systems for infrastructure management.
The use of drones in topics related to precision agriculture to improve the efficiency in the application of phytosanitary products to vineyards increases every day. Drones are especially productive in difficult orographic terrains, where other mechanical systems such as tractors cannot be used. This study shows the development and implementation of a methodology to determine key parameters to decide the suitability of a drone to a spraying task (i.e. spraying time for a certain parcel, number or tank refills required), taking into account the technical specifications of a certain commercial model. For the validation, the data of a vineyard belonging to the Rías Baixas appellation of origin (NW Spain) and the technical specifications of drones from three different manufacturers (i.e. DJI, Hylio and Yamaha) are used. Results show that the Hylio AD122 with a phytosanitary tank of 22 L provides the best performance, with a productivity around 6 minutes per hectare. Keywords: drone spraying; vineyard; precision agriculture; aerial works
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.