Abstract. This paper introduces an approach for dense 3D reconstruction from unregistered Internet-scale photo collections with about 3 million images within the span of a day on a single PC ("cloudless"). Our method advances image clustering, stereo, stereo fusion and structure from motion to achieve high computational performance. We leverage geometric and appearance constraints to obtain a highly parallel implementation on modern graphics processors and multi-core architectures. This leads to two orders of magnitude higher performance on an order of magnitude larger dataset than competing state-of-the-art approaches.
Performance evaluation of salient features has a long-standing tradition in computer vision. In this paper, we fill the gap of evaluation for the recent wave of binary feature descriptors, which aim to provide robustness while achieving high computational efficiency. We use established metrics to embed our assessment into the body of existing evaluations, allowing us to provide a novel taxonomy unifying both traditional and novel binary features. Moreover, we analyze the performance of different detector and descriptor pairings, which are often used in practice but have been infrequently analyzed. Additionally, we complement existing datasets with novel data testing for illumination change, pure camera rotation, pure scale change, and the variety present in photo-collections. Our performance analysis clearly demonstrates the power of the new class of features. To benefit the community, we also provide a website for the automatic testing of new description methods using our provided metrics and datasets (www.cs.unc.edu/feature-evaluation).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.