BackgroundSerum peptidases, such as angiotensin-converting enzyme (ACE), angiotensin-converting enzyme-2 (ACE2), neutral endopeptidase (NEP), aminopeptidase N (APN), and aminopeptidase A (APA), are important elements of the renin–angiotensin system (RAS). Dysregulation of these enzymes has been associated with hypertension and cardiovascular risk. In the present study, serum activities of RAS peptidases were analyzed to evaluate the existence of sexual differences, with a possible different pattern in pre- and post-andropausal/post-menopausal participants.MethodsOne hundred and eighteen healthy men and women between 41 and 70 years of age (58 women and 60 men) were recruited to participate in the study. Serum RAS-regulating enzymes were measured by spectrofluorimetry. Enzymatic activity was recorded as units of enzyme per milliliter of serum (U/mL).ResultsSignificantly lower serum APA activity was observed in men with respect to women; no sex differences were detected for ACE, ACE2, NEP, or APN. Significantly lower APA and ACE serum activity were observed in older men compared to older women. In contrast, younger (<55 years) men had significantly higher values of NEP serum activity than younger women. Significantly lower ACE serum activity was detected in older men compared to younger men. In women, significantly higher ACE2 serum activity was observed in older women compared to younger women.ConclusionsThese results suggest a differential effect of aging on the activity of RAS enzymes in men and women, especially with respect to the breakpoint of andropausia/menopausia, on the critical serum enzymatic activities of the RAS, which could correlate with sexual differences in cardiovascular risk.
G-protein inwardly rectifying potassium (GIRK) channels mediate the synaptic actions of numerous neurotransmitters in the mammalian brain and play an important role in the regulation of neuronal excitability in most brain regions through activation of various G-protein-coupled receptors such as the serotonin 5-HT(1A) receptor. In this report we describe the localization of GIRK1, GIRK2, and GIRK3 subunits and 5-HT(1A) receptor in the rat brain, as assessed by immunohistochemistry and in situ hybridization. We also analyze the co-expression of GIRK subunits with the 5-HT(1A) receptor and cell markers of glutamatergic, gamma-aminobutyric acid (GABA)ergic, cholinergic, and serotonergic neurons in different brain areas by double-label in situ hybridization. The three GIRK subunits are widely distributed throughout the brain, with an overlapping expression in cerebral cortex, hippocampus, paraventricular nucleus, supraoptic nucleus, thalamic nuclei, pontine nuclei, and granular layer of the cerebellum. Double-labeling experiments show that GIRK subunits are present in most of the 5-HT(1A) receptor-expressing cells in hippocampus, cerebral cortex, septum, and dorsal raphe nucleus. Similarly, GIRK mRNA subunits are found in glutamatergic and GABAergic neurons in hippocampus, cerebral cortex, and thalamus, in cholinergic cells in the nucleus of vertical limb of the diagonal band, and in serotonergic cells in the dorsal raphe nucleus. These results provide a deeper knowledge of the distribution of GIRK channels in different cell subtypes in the rat brain and might help to elucidate their physiological roles and to evaluate their potential involvement in human diseases.
Purpose: Physical activity training programs in older adults have recognized health benefits. Evidence suggests that training should include a combination of progressive resistance, balance, and functional training. Our aim was to assess the effects of a simple physical activity program working on strength, flexibility, cardiovascular fitness, and balance in older adults, as well as the effects of a detraining period, at various different ages. Methods: This was longitudinal prospective study, including a convenience sample of 227 independent older adults (54 men, 173 women) who completed a simple 9-month training program and 3-month detraining follow-up. The subjects were categorized into two age groups (65-74 [n = 180], and >74 years [n = 47]). At the beginning of the study (baseline), the end of the training period, and 3 months later (postdetraining), body mass index, body fat percentage, triceps skinfold thickness, hand grip strength, lower limb and trunk flexibility, resting heart rate, heart rate after exercise, and balance were measured, while VO 2 max was estimated using the Rockport fitness test and/or measured directly. Results: Significant improvements in strength (p < .0001), flexibility (p < .0001), heart rate after exercise (p < .0001), and balance (p < .0001) were observed at the end of the training program. Flexibility and balance (p < .0001) improvements were maintained at the end of the detraining. Conclusion: A simple long-term physical activity training program increases strength in both sexes, improves flexibility in women, and improves balance in older adults. The results also indicate the importance of beginning early in old age and maintaining long-term training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.