Sepsis is characterized by a dysregulated inflammatory response to infection. Despite studies in mice, the cellular and molecular basis of human sepsis remains unclear and effective therapies are lacking. Blood monocytes serve as the first line of host defense and are equipped to recognize and respond to infection by triggering an immune-inflammatory response. However, the response of these cells in human sepsis and their contribution to sepsis pathogenesis is poorly understood. To investigate this, we performed a transcriptomic, functional, and mechanistic analysis of blood monocytes from patients during sepsis and after recovery. Our results revealed the functional plasticity of monocytes during human sepsis, wherein they transited from a pro-inflammatory to an immunosuppressive phenotype, while enhancing protective functions like phagocytosis, anti-microbial activity, and tissue remodeling. Mechanistically, hypoxia inducible factor-1α (HIF1α) mediated this functional re-programming of monocytes, revealing a potential mechanism for their therapeutic targeting to regulate human sepsis.
Heterotrimers composed of B cell CLL/lymphoma 10 (BCL10), mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), and caspase recruitment domain-containing (CARD) family adaptors play a role in NF-κB activation and have been shown to be involved in both the innate and the adaptive arms of immunity in murine models. Moreover, individuals with inherited defects of MALT1, CARD9, and CARD11 present with immunological and clinical phenotypes. Here, we characterized a case of autosomal-recessive, complete BCL10 deficiency in a child with a broad immunodeficiency, including defects of both hematopoietic and nonhematopoietic immunity. The patient died at 3 years of age and was homozygous for a loss-of-expression, loss-of-function BCL10 mutation. The effect of BCL10 deficiency was dependent on the signaling pathway, and, for some pathways, the cell type affected. Despite the noted similarities to BCL10 deficiency in mice, including a deficient adaptive immune response, human BCL10 deficiency in this patient resulted in a number of specific features within cell populations. Treatment of the patient's myeloid cells with a variety of pathogen-associated molecular pattern molecules (PAMPs) elicited a normal response; however, NF-κB-mediated fibroblast functions were dramatically impaired. The results of this study indicate that inherited BCL10 deficiency should be considered in patients with combined immunodeficiency with B cell, T cell, and fibroblast defects.
M1 and M2 macrophage phenotypes, which mediate proinflammatory and antiinflammatory functions, respectively, represent the extremes of immunoregulatory plasticity in the macrophage population. This plasticity can also result in intermediate macrophage states that support a balance between these opposing functions. In sepsis, M1 macrophages can compensate for hyperinflammation by acquiring an M2-like immunosuppressed status that increases the risk of secondary infection and death. The M1 to M2 macrophage reprogramming that develops during LPS tolerance resembles the pathological antiinflammatory response to sepsis. Here, we determined that p21 regulates macrophage reprogramming by shifting the balance between active p65-p50 and inhibitory p50-p50 NF-κB pathways. p21 deficiency reduced the DNA-binding affinity of the p50-p50 homodimer in LPS-primed and -rechallenged macrophages, impairing their ability to attenuate IFN-β production and acquire an M2-like hyporesponsive status. High p21 levels in sepsis patients correlated with low IFN-β expression, and p21 knockdown in human monocytes corroborated its role in IFN-β regulation. The data demonstrate that p21 adjusts the equilibrium between p65-p50 and p50-p50 NF-κB pathways to mediate macrophage plasticity in LPS tolerance. Identifying p21-related pathways involved in monocyte reprogramming may lead to potential targets for sepsis treatment.
Obstructive sleep apnoea (OSA) is associated with higher cancer incidence, tumour aggressiveness and cancer mortality, as well as greater severity of infections, which have been attributed to an immune deregulation. We studied the expression of programmed cell death (PD)-1 receptor and its ligand (PD-L1) on immune cells from patients with OSA, and its consequences on immune-suppressing activity. We report that PD-L1 was overexpressed on monocytes and PD-1 was overexpressed on CD8 T-cells in a severity-dependent manner. PD-L1 and PD-1 overexpression were induced in both the human and murine models of intermittent hypoxia, as well as by hypoxia-inducible factor-1α transfection. PD-L1/PD-1 crosstalk suppressed T-cell proliferation and activation of autologous T-lymphocytes and impaired the cytotoxic activity of CD8 T-cells. In addition, monocytes from patients with OSA exhibited high levels of retinoic acid related orphan receptor, which might explain the differentiation of myeloid-derived suppressor cells. Intermittent hypoxia upregulated the PD-L1/PD-1 crosstalk in patients with OSA, resulting in a reduction in CD8 T-cell activation and cytotoxicity, providing biological plausibility to the increased incidence and aggressiveness of cancer and the higher risk of infections described in these patients.
Sepsis, among other pathologies, is an endotoxin tolerance (ET)-related disease. On admission, we classified 48 patients with sepsis into 3 subgroups according to the ex vivo response to lipopolysaccharide. This response correlates with the Acute Physiology and Chronic Health Evaluation (APACHE) II score and the ET degree. Moreover, the ET-related classification determines the outcome of these patients. Programmed cell death-ligand 1 (PD-L1) expression on septic monocytes is also linked with ET status. In addition to the regulation of cytokine production, one of the hallmarks of ET that significantly affects patients with sepsis is T-cell proliferation impairment or a poor switch to the adaptive response. PD-L1/programmed cell death-1 (PD-1) blocking and knockdown assays on tolerant monocytes from both patients with sepsis and the in vitro model reverted the impaired adaptive response. Mechanistically, the transcription factor hypoxia-inducible factor-1α (HIF1α) has been translocated into the nucleus and drives PD-L1 expression during ET in human monocytes. This fact, together with patient classification according to the ex vivo lipopolysaccharide response, opens an interesting field of study and potential personalized clinical applications, not only for sepsis but also for all ET-associated pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.