Vitamin K antagonists (VKAs) remain as the most prescribed drug for treatment and prevention of thrombotic disorders in many countries, despite the recent approval of the new oral anticoagulants (NOACs). Although effectiveness and safety of VKAs are tightly associated to maintaining the patient within the international normalised ratio (INR) therapeutic range (TWR), they have been likened to NOACs when patients are in good INR control (≥66% of TWR). Therefore, assessing the safety of patients should be a priority in the selection of the anticoagulation therapy. The aim of this study was to evaluate the association between CYP2C9*2, CYP2C9*3, VKORC1, CYP4F2*3, ABCB1 C3435T, APOE, CYP2C19*2 and CYP2C19*17 gene polymorphisms and treatment safety in 128 patients diagnosed with atrial fibrillation or venous thromboembolism during the initial first seven months of acenocoumarol therapy. After the first month, VKORC1-T-allele and APOE-E3/E3 genotype were independently associated to higher time above therapeutic range (TAR) and lower time below the therapeutic range (TBR). After seven months, VKORC1 T-allele predicted higher TAR, and was also associated to increased INR>4, particularly the TT-genotype (odds ratio [OR]: 32; 95% confidence interval [CI95%]: 6-175; p=810⁻⁵). C-alleles for CYP2C9*3 (OR: 5.5; CI95%: 1.8-17; p=0.003) and ABCB1 (OR: 8.9;CI95%: 1.1-70; p=0.039) independently influenced on INR>6 . Patients VKORC1-TT/ABCB1-C remained 26.8% [19.7-38.9] TAR, with associated relative risk (RR) for INR>4 1.8 higher (CI95%: 1.2-2.5; p=0.015). Patients VKORC1-TT also presented the highest risk of bleeding events (RR: 3.5;CI95%: 1.4-8.4; p=0,010). In conclusion, VKORC1, CYP2C9*3, APOE and ABCB1 genotypes should be considered in prevention of overanticoagulation and bleeding events in the initiation of acenocoumarol therapy.
Non-small-cell lung cancer (NSCLC) leads cancer-related deaths worldwide. Mutations in the kinase domain of the EGFR gene provide sensitivity to tyrosine kinase inhibitors (TKI) drugs. TKI show initial response rates over 75% in mutant EGFR-NSCLC patients, although most of these patients acquire resistance to EGFR inhibitors after therapy. EGFR-TKI resistance mechanisms include amplification in MET and its ligand, and also MET mutations. MET signaling dysregulation has been involved in tumor cell growth, survival, migration and invasion, angiogenesis and activation of several pathways, therefore representing an attractive target for anticancer drug development. In this review, we will discuss MET-related mechanisms of EGFR-TKI resistance in NSCLC, as well as the main drugs targeted to inhibit MET pathway.
The variability in the stable ACN dose was better explained by a pharmacogenetic algorithm including clinical and genetic factors (CYP2C9, VKORC1, and APOE) than by a clinical algorithm, providing a more accurate dosage prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.