η(5)-η(1) ring slippage of [OsCp2] (Cp = η(5)-C5H5) and [Ru(η(5)-ind)2] (ind = indenyl) resulting from reaction with the ruthenium(VI) nitride [Ru(L(OEt))(N)Cl2] (1; L(OEt)(-) = [CoCp{P(O)(OEt)2}3](-)) is reported. The treatment of [OsCp2] or [Ru(η(5)-ind)2] with 1 resulted in η(5)-η(1) ring slippage of the cycloolefin ligands and formation of the trinuclear nitrido complexes [Cp(η(1)-C5H5)Os(NRuL(OEt)Cl2)2] (2) or [(η(5)-ind)(η(1)-ind)Ru(NRuL(OEt)Cl2)2] (3). No reactions were found between [OsCp2] and amines, such as pyridine and 2,2'-bipyridyl, or other metal nitrides, such as [Os(L(OEt))(N)Cl2], indicating that the electrophilic property of 1 is essential for ring slippage. The crystal structures of 2 and 3 have been determined. The short Os-N distances in 2 [1.833(5) and 1.817(5) Å] and the (ind)Ru-N distances in 3 [1.827(5) and 1.852(5) Å] are indicative of multiple bond character, consistent with density functional theory (DFT) calculations. Therefore, 2 and 3 may be described by two resonance forms: Ru(VI)-M(II)-Ru(VI) and Ru(IV)-M(VI)-Ru(IV) (M = Os, Ru). Also, DFT calculations indicate that for the reaction of 1 with [OsCp2] or [Ru(η(5)-ind)2], η(5)-η(1) ring slippage is energetically more favorable than the η(5)-η(3) counterpart. The driving force for η(5)-η(1) ring slippage is believed to be the formation of the strong M-N (M = Os, Ru) (multiple) bonds. By contrast, the same reaction with acetonitrile is energetically uphill, and thus no ring slippage occurs.
Ruthenium thio- and seleno-nitrosyl complexes containing chelating sulfur and oxygen ligands have been synthesised and their de-chalcogenation reactions have been studied. The reaction of mer-[Ru(N)Cl3(AsPh3)2] with elemental sulfur and selenium in tetrahydrofuran at reflux afforded the chalcogenonitrosyl complexes mer-[Ru(NX)Cl3(AsPh3)2] [X = S (1), Se (2)]. Treatment of 1 with KN(R2PS)2 afforded trans-[Ru(NS)Cl{N(R2PS)2}2] [R = Ph (3), Pr(i) (4), Bu(t) (5)]. Alternatively, the thionitrosyl complex 5 was obtained from [Bu(n)4N][Ru(N)Cl4] and KN(Bu(t)2PS)2, presumably via sulfur atom transfer from [N(Bu(t)2PS)2](-) to the nitride. Reactions of 1 and 2 with NaLOEt (LOEt(-) = [Co(η(5)-C5H5){P(O)(LOEt)2}3](-)) gave [Ru(NX)LOEtCl2] (X = S (8), Se (9)). Treatment of [Bu(n)4N][Ru(N)Cl4] with KN(R2PS)2 produced Ru(IV)-Ru(IV)μ-nitrido complexes [Ru2(μ-N){N(R2PS)2}4Cl] [R = Ph (6), Pr(i) (7)]. Reactions of 3 and 9 with PPh3 afforded 6 and [Ru(NPPh3)LOEtCl2], respectively. The desulfurisation of 5 with [Ni(cod)2] (cod = 1,5-cyclooctadiene) gave the mixed valance Ru(III)-Ru(IV)μ-nitrido complex [Ru2(μ-N){N(Bu(t)2PS)2}4] (10) that was oxidised by [Cp2Fe](PF6) to give the Ru(IV)-Ru(IV) complex [Ru2(μ-N){N(Bu(t)2PS)2}4](PF6) ([10]PF6). The crystal structures of 1, 2, 3, 7, 9 and 10 have been determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.