FeCo-based soft magnetic alloys are commonly used in macroscale devices to improve its electromagnetic performance, whereas they have been barely used in the microscale. Current FeCo alloy micromanufacturing processes present some difficulties like low structural strength, oxidation at high temperature processes, stoichiometry mismatches in deposition processes and tough workability. In this work, a microcutting of FeCo-2 V-based soft magnetic alloys process is presented and described as an alternative method to obtain microparts with high magnetic properties and good geometrical finish. The results of the machining process are analysed by varying the machining parameters such as depth of cut, tool diameter, rotation speed and feed speed on simple machining operations. The study has been done for 50-μm-diameter endmill and 250-μm-diameter endmill tools. It concludes that the roughness is minimized when machining parameter combination is 0.24 mm/min of feed rate and 8 μm of depth of cut size for a 250-μm-diameter tool, while for a 50-μm-diameter tool, the selected feed rate is 0.24 mm/min, for a depth of cut between 2 and 4 μm. An automated precision 3-axis CNC station is used. Shapes needed for actuators such as angular slots, disks, or slender square geometries are shown in this work with excellent magnetic and mechanical properties. Additionally, a complementary electropolishing process is described. This process helps to eliminate burr in edges and residuals of the milling operation. This study demonstrates that micromilling can be a good alternative for microfabrication of FeCo-2 V components, suitable for precision microassemblies on MEMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.