Intensive care unit acquired weakness is a long-term consequence after critical illness; it has been related to muscle atrophy and can be considered as one of the main nutritional support challenges at the intensive care unit. Measuring muscle mass by image techniques has become a new area of research for the nutritional support field, extending our knowledge about muscle wasting and the impact of nutritional approaches in the critical care setting, although currently there is no universally accepted technique to perform muscle measurements by ultrasound. Because of this, we present this tutorial for nutrition support clinicians, in order to understand and perform muscle measurements by this reliable, accessible, low-cost, and easy-to-use technique. Reviewing issues such as quadriceps muscle anatomy, correct technique (do's and don'ts), identification of structures, and measurement of the rectus femoris and vastus intermedius muscles helps to acquire the basic concepts of this technique and encouraging more research in this field.
Malnutrition (undernutrition) encompasses low intake or uptake, loss of fat mass, and muscle wasting and is associated with worse outcomes. Ultrasound has been introduced in the intensive care unit as a tool to assess muscle mass. The aim of the present study is to explore the relation between initial muscle mass and mortality in adult patients admitted to the intensive care unit. Methods. Rectus femoris and vastus intermedius thicknesses were measured by B-mode ultrasound in adult patients at admission, along with demographic characteristics, illness severity, comorbidities, biochemical variables, treatments, and in-hospital mortality as main outcomes. Analysis was made comparing survivors versus nonsurvivors and finally using binary logistic regression with mortality as dependent variable. Results. 59 patients were included in the analysis, severity measured by sequential organ failure assessment (SOFA) score was greater in nonsurvivors (17 (7) versus 24 (10) and 3 (1–5) versus 7 (3–10), resp.). Also, muscle thickness was lower in the latter group (1.44 (0.59) cm versus 0.98 (0.3) cm). Logistic regression showed severity by SOFA score as a risk factor and muscle thickness as a protective factor for mortality. Conclusion. Muscle mass showed to be a protective factor despite severity of illness; there is much more work to do regarding interventions and monitoring in order to prevent or overcome low muscle mass at admission to the intensive care unit.
Introduction: Critically ill children in the pediatric intensive care unit (PICU) are at high risk for developing nutritional deficiencies and undernutrition is known to be a risk factor for morbidity and mortality. Malnutrition represents a continuous spectrum ranging from marginal nutrient status to severe metabolic and functional alterations and this in turn, affects clinical outcome. Objectives: The aim of the study was to assess nutritional status of critically ill children admitted to the PICU and its association to clinical outcomes. Methods: Critically ill children age 6 months to 18 years were prospectively enrolled on PICU admission. Nutritional status was assessed by weight for age (WFA: underweight), weight for height (WFH: wasting), height for age (HFA: stunting) z-scores and mid upper arm circumference (MUAC: wasting) according to the WHO. (1,2) Malnutrition was defined as mild, moderate, and severe if z-scores were > −1, > − 2, and > −3, respectively. Hospital and PICU length of stay (LOS), duration of mechanical ventilation (MV), and risk of mortality (ROM) by the Pediatric Index of Mortality 2 (PIM2) were obtained. Sensitivity and specificity of the MUAC to identify children with wasting (WFH) were calculated. Results: Two hundred and fifty children (136 males), aged 81 months (23-167; median (25-75 th IQR)), were prospectively included in the study. The hospital LOS was 8 (4-16) days; PICU LOS: 2 (1-4) days; duration of MV, 0 (0-1.5) days;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.