Alzheimer’s disease (AD) is associated with marked atrophy of the cerebral cortex and accumulation of amyloid plaques and neurofibrillary tangles. Amyloid plaques are formed by oligomers of amyloid-β (Aβ) in the brain, with a length of 42 and 40 amino acids. α-secretase cleaves amyloid-β protein precursor (AβPP) producing the membrane-bound fragment CTFα and the soluble fragment sAβPPα with neuroprotective activity; β-secretase produces membrane-bound fragment CTFβ and a soluble fragment sAβPPβ. After α-secretase cleavage of AβPP, γ-secretase cleaves CTFα to produce the cytoplasmic fragment AICD and P3 in the non-amyloidogenic pathway. CTFβ is cleaved by γ-secretase producing AICD as well as Aβ in amyloidogenic pathways. In the last years, the study of natural products and synthetic compounds, such as α-secretase activity enhancers, β-secretase inhibitors (BACE-1), and γ-secretase activity modulators, have been the focus of pharmaceuticals and researchers. Drugs were improved regarding solubility, blood-brain barrier penetration, selectivity, and potency decreasing Aβ42. In this regard, BACE-1 inhibitors, such as Atabecestat, NB-360, Umibecestat, PF-06751979, Verubecestat, LY2886721, Lanabecestat, LY2811376, and Elenbecestat, were submitted to phase I-III clinical trials. However, inhibition of Aβ production did not recover cognitive functions or reverse the disease. Novel strategies are being developed, aiming at a partial reduction of Aβ production, such as the development of γ-secretase modulators or α-secretase enhancers. Such therapeutic tools shall focus on slowing down or minimizing the progression of neuronal damage. Here, we summarize structures and the activities of the latest compounds designed for AD treatment, with remarkable in vitro, in vivo, and clinical phase activities.
The somatic cloning by transfer of the nuclei of differentiated adult cells to previously enucleated oocytes is a promising technique for the production of embryos of high genetic value. The better mastering of somatic cloning gives us the possibility to produce embryos from endangered species. The huemul is an Andean native deer, that has been declared an endangered species, it holds a great patrimonial value and it is a Chilean national emblem. In Chile the huemul has the status of protected animal on thirteen Parks and National Reserves managed by Corporacion Nacional Forestal (CONAF). This protection, however, is considered insufficient due to the few geographical connections between the different protected areas. Furthermore, a great proportion of these areas are not subjected to use or they do not constitute adequate habitats. Many authors have proposed that the use of biotechnological methods in reproduction and assisted procreation may help conservational programs orientated to the protection of deer species threatened by extinction. All the anterior prompted us to initiate this study concerning the production of cloned huemul embryos.
Protection of maturing sperm from potential endogenous or exogenous harmful substances during their transit throughout the epididymis is a critical event. The authors studied the activity of gamma-glutamyl transpeptidase (GGT) and glutathione S-transferase (GST), and glutathione (GSH) levels in epithelial cell cultures from human caput, corpus, and cauda epididymides. Tissue was obtained from patients undergoing therapeutic orchidectomy for prostatic cancer. Enzymatic activity was measured in conditioned media and cellular fractions. Androgen influence was also evaluated. Both enzymatic activities were found in cellular homogenates and conditioned media from cultures of all epididymal regions. GGT activity was highest in cultures from cauda epididymis, both in conditioned media and cell fractions, while GST activity did not show regional differences in conditioned media, but exhibited higher activity in cell homogenates from cauda cultures than those obtained from corpus and caput epididymis. GSH level showed no regional difference in cell homogenates and it could not be detected in conditioned media by the method used. Presence of different concentrations of dihydrotestosterone (DHT) had no influence neither on the enzymatic activities nor GSH concentration. The results indicate that GGT and GST are present along the human epididymis and a fraction or isoform of these enzymes might be secreted to the luminal fluid to play a detoxificative role in sperm maturation.
The objective of this project is to produce pudu embryos, obtained by means of fibroblast transfer taken from the ear of one animal, to the oocytes of a domestic ruminant such as cattle. In further work, the pudu embryos will be transferred to the uterus of synchronized recipient females of another species.Biopsies 1mm in size were obtained from the outer rim of the ear of two male pudu deer belonging to the Buin Zoological park, Santiago, Chile. The cell lines have been established and kept according to protocols used in cattle. The oocytes are obtained through a puncture in the oocyte-cumulus complex (OCC) from cow ovaries recovered from the butcher. Each oocyte is enucleated and fused with an isolated fibroblast which is inserted beneath the pellucid zone. The fusion of cell membranes is achieved by means of electric shocks. In respect to the timetable, we have observed that a stage of two blastomers is reached on the second day, and morulae of 8 to 16 cells on the third day. On the fourth day it has differenciated as a blastocyst and on the seventh day it finally hacht from the pellucid zone. The obtainment of embryonic blastocytes indicates that it is possible to obtain pudu embryos through heterospecific cloning, even though the percentage of success is relatively low. The viability of the embryos obtained in this manner after in uterus transfer remains still to be verified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.