Smart Grid (SG) technologies are leading the modifications of power grids worldwide. e Energy Resource Management (ERM) in SGs is a highly complex problem that needs to be efficiently addressed to maximize incomes while minimizing operational costs. Due to the nature of the problem, which includes mixed-integer variables and non-linear constraints, Evolutionary Algorithms (EA) are considered a good tool to find optimal and near-optimal solutions to large-scale problems. In this paper, we analyze the application of Differential Evolution (DE) to solve the large-scale ERM problem in SGs through extensive experimentation on a case study using a 33-Bus power network with high penetration of Distributed Energy Resources (DER) and Electric Vehicles (EVs), as well as advanced features such as energy stock exchanges and Demand Response (DR) programs. We analyze the impact of DE parameter seing on four state-of-the art DE strategies. Moreover, DE strategies are compared with other well-known EAs and a deterministic approach based on MINLP. Results suggest that, even when DE strategies are very sensitive to the seing of their parameters, they can find beer solutions than other EAs, and near-optimal solutions in acceptable times compared with a MINLP approach.
CCS CONCEPTS•Computing methodologies → Search methodologies; •Applied computing → Engineering;
Intelligent agents, human or artificial, often change their behaviour as they interact with other agents. For an agent to optimise its performance when interacting with such agents, it must be capable of detecting and adapting according to such changes. This work presents an approach on how to effectively deal with non-stationary switching opponents in a repeated game context. Our main contribution is a framework for online learning and planning against opponents that switch strategies. We present how two opponent modelling techniques work within the framework and prove the usefulness of the approach experimentally in the iterated prisoner's dilemma, when the opponent is modelled as an agent that switches between different strategies (e.g. TFT, Pavlov and Bully). The results of both models were compared against each other and against a state-of-the-art non-stationary reinforcement learning technique. Results reflect that our approach obtains competitive results without needing an offline training phase, as opposed to the state-of-the-art techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.