Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing.
Recent engineering and neuroscience applications have led to the development of brain–computer interface (BCI) systems that improve the quality of life of people with motor disabilities. In the same area, a significant number of studies have been conducted in identifying or classifying upper-limb movement intentions. On the contrary, few works have been concerned with movement intention identification for lower limbs. Notwithstanding, lower-limb neurorehabilitation is a major topic in medical settings, as some people suffer from mobility problems in their lower limbs, such as those diagnosed with neurodegenerative disorders, such as multiple sclerosis, and people with hemiplegia or quadriplegia. Particularly, the conventional pattern recognition (PR) systems are one of the most suitable computational tools for electroencephalography (EEG) signal analysis as the explicit knowledge of the features involved in the PR process itself is crucial for both improving signal classification performance and providing more interpretability. In this regard, there is a real need for outline and comparative studies gathering benchmark and state-of-art PR techniques that allow for a deeper understanding thereof and a proper selection of a specific technique. This study conducted a topical overview of specialized papers covering lower-limb motor task identification through PR-based BCI/EEG signal analysis systems. To do so, we first established search terms and inclusion and exclusion criteria to find the most relevant papers on the subject. As a result, we identified the 22 most relevant papers. Next, we reviewed their experimental methodologies for recording EEG signals during the execution of lower limb tasks. In addition, we review the algorithms used in the preprocessing, feature extraction, and classification stages. Finally, we compared all the algorithms and determined which of them are the most suitable in terms of accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.