The use of high-intensity ultrasound represents an efficient manner of producing small scale agitation, enhancing mass transfer on supercritical fluids (SF) extraction processes. In this way, a supercritical CO(2) extraction of oil from particulate almonds using power ultrasound was studied. To examine the effect of the acoustic waves all experiments were performed with and without ultrasound. A power ultrasonic transducer for a working frequency of about 20 kHz was constructed and installed inside a high-pressure 5 l SF extractor. The experimental tests were carried out with CO(2) at 280 bar and 55 degrees C. Grounded almonds with an oil content of about 55%, in an amount of 1500 g were deposited inside the SF reactor where the solvent was introduced at a flow rate of 20 kg/h. The results show that the kinetics and the extraction yield of the oil were enhanced by 30% and 20% respectively, when a power of about 50 W was applied to the transducer. The average time of each extraction process was of about 8 h and 30 min. In addition, the transducer was also used as a sensitive probe capable to detect the phase behavior of supercritical fluids when it was driven with low power signals.
High-power ultrasonics (HPU) is a green emerging technology that offers a great potential for a wide range of industrial processes. Nevertheless such potential have remained restricted during many years to a limited number of applications which reached commercial development. The possible major problem for extending the range of HPU industrial applications has been the lack of power ultrasonic transducers for large-scale application, adapted to the requirements of each specific problem with high efficiency and power capacity. A new family of HPU transducers with extensive radiators have been recently introduced. It comprises a variety of transducer types designed with the radiators adapted to different specific uses in fluids and multi-phase media. Such transducers implement high power capacity, high efficiency and radiation pattern control. In addition, their design incorporate strategies to eliminate or reduce modal interactions produced at high power as a consequence of their nonlinear behaviour. The introduction of such new transducers has significantly contributed to the development at semi-industrial and industrial level of a number of processes in the food and beverage industry, in environment and in manufacturing. This paper deals with the basic structure and main characteristics of such transducers as well as their performance in the developed application processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.