Most musculoskeletal injuries occur during the work routines in different areas, due to repetitive and sustained movements, they are often located in the shoulder. For workers in the building sector, the repetitive movements and displacements occur under load and unnatural postures of the shoulder joint. For this reason, this study aims to model in 3D the biological components which form the shoulder joint for the later finite element analysis. Three cases with different loads have been considered for this study. Due to a linear and isotropic joint approach it has been possible to evaluate the tensions in the main components of the shoulders: muscles, tendons and ligaments. The methodology used allowed obtaining an improved mesh of the shoulder joint to analyse real situations with finite element method analysis with applications in the field of sports medicine, work, etc. Furthermore, the simplification adopted for modelling the joint muscles, as 1D elements in the finite element model has made it possible to establish different positions of human joint without mesh again each of the studied positions. The results are consistent with the states of applied loads. In fact, the maximum stresses in bones are in the insertion areas of the ligaments. Due to the static positions of the joint under study, the muscles do not support high stresses. According to the stresses distribution, the maximum values are in the zones of tendons. From the result analysis, it is observed how the stresses distribution in the cartilage area maintains coherence with reality since the maximum stresses appear in the lower half of the cartilage. In this area in which the Humerus-scapula contact is greater, the compression tensions are greater.
The main purpose of this paper is to present a system to detect extrusion failures in fused deposition modelling (FDM) 3D printers by sensing that the filament is moving forward properly. After several years using these kind of machines, authors detected that there is not any system to detect the main problem in FDM machines. Authors thought in different sensors and used the weighted objectives method, one of the most common evaluation methods, for comparing design concepts based on an overall value per design concept. Taking into account the obtained scores of each specification, the best choice for this work is the optical encoder. Once the sensor is chosen, it is necessary to design de part where it will be installed without interfering with the normal function of the machine. To do it, photogrammetry scanning methodology was employed. The developed device perfectly detects the advance of the filament without affecting the normal operation of the machine. Also, it is achieved the primary objective of the system, avoiding loss of material, energy, and mechanical wear, keeping the premise of making a low-cost product that does not significantly increase the cost of the machine. This development has made it possible to use the printer with remains of coil filaments, which were not spent because they were not sufficient to complete an impression. Also, printing models in two colours with only one extruder has been enabled by this development.
The purpose of this article is to develop a new concept of modular and operative prosthetic hand based on rapid prototyping and a novel shape-memory-alloy (SMA) actuator, thus minimizing the manufacturing costs. An underactuated mechanism was needed for the design of the prosthesis to use only one input source. Taking into account the state of the art, an underactuated mechanism prosthetic hand was chosen so as to implement the modifications required for including the external SMA actuator. A modular design of a new prosthesis was developed which incorporated a novel SMA actuator for the index finger movement. The primary objective of the prosthesis is achieved, obtaining a modular and functional low-cost prosthesis based on additive manufacturing executed by a novel SMA actuator. The external SMA actuator provides a modular system which allows implementing it in different systems. This paper combines rapid prototyping and a novel SMA actuator to develop a new concept of modular and operative low-cost prosthetic hand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.