How living cells deal with head-on collisions of the replication and transcription complexes has been debated for a long time. Even in the widely studied model bacteria Escherichia coli, the enzymes that take care of such collisions are still unknown. We report here that in vivo, the DinG, Rep and UvrD helicases are essential for efficient replication across highly transcribed regions. We show that when rRNA operons (rrn) are inverted to face replication, the viability of the dinG mutant is affected and over-expression of RNase H rescues the growth defect, showing that DinG acts in vivo to remove R-loops. In addition, DinG, Rep and UvrD exert a common function, which requires the presence of two of these three helicases. After replication blockage by an inverted rrn, Rep in conjunction with DinG or UvrD removes RNA polymerase, a task that is fulfilled in its absence by the SOS-induced DinG and UvrD helicases. Finally, Rep and UvrD also act at inverted sequences other than rrn, and promote replication through highly transcribed regions in wild-type E. coli.
We have sequenced the genome of the intracellular symbiont Buchnera aphidicola from the aphid Baizongia pistacea. This strain diverged 80 -150 million years ago from the common ancestor of two previously sequenced Buchnera strains. Here, a field-collected, nonclonal sample of insects was used as source material for laboratory procedures. As a consequence, the genome assembly unveiled intrapopulational variation, consisting of Ϸ1,200 polymorphic sites. Comparison of the 618-kb (kbp) genome with the two other Buchnera genomes revealed a nearly perfect gene-order conservation, indicating that the onset of genomic stasis coincided closely with establishment of the symbiosis with aphids, Ϸ200 million years ago. Extensive genome reduction also predates the synchronous diversification of Buchnera and its host; but, at a slower rate, gene loss continues among the extant lineages. A computational study of protein folding predicts that proteins in Buchnera, as well as proteins of other intracellular bacteria, are generally characterized by smaller folding efficiency compared with proteins of free living bacteria. These and other degenerative genomic features are discussed in light of compensatory processes and theoretical predictions on the long-term evolutionary fate of symbionts like Buchnera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.