a b s t r a c tSolar radiation is the most important source of renewable energy in the planet; it's important to solar engineers, designers and architects, and it's also fundamental for efficiently determining irrigation water needs and potential yield of crops, among others. Complete and accurate solar radiation data at a specific region are indispensable. For locations where measured values are not available, several models have been developed to estimate solar radiation. The objective of this paper was to calibrate, validate and compare five representative models to predict global solar radiation, adjusting the empirical coefficients to increase the local applicability and to develop a linear model. All models were based on easily available meteorological variables, without sunshine hours as input, and were used to estimate the daily solar radiation at Cañada de Luque (Córdoba, Argentina).As validation, measured and estimated solar radiation data were analyzed using several statistic coefficients. The results showed that all the analyzed models were robust and accurate (R 2 and RMSE values between 0.87 to 0.89 and 2.05 to 2.14, respectively), so global radiation can be estimated properly with easily available meteorological variables when only temperature data are available.Hargreaves-Samani, Allen and Bristow-Campbell models could be used with typical values to estimate solar radiation while Samani and Almorox models should be applied with calibrated coefficients. Although a new linear model presented the smallest R 2 value (R 2 ¼ 0.87), it could be considered useful for its easy application. The daily global solar radiation values produced for these models can be used to estimate missing daily values, when only temperature data are available, and in hydrologic or agricultural applications.
The incident solar radiation on soil is an important variable used in agricultural applications; it is also relevant in hydrology, meteorology and soil physics, among others. To estimate this variable, empirical models have been developed using several parameters and, recently, prognostic and prediction models based on artificial intelligence techniques such as neural networks. The aim of this work was to develop linear models and neural networks, multilayer perceptron, to estimate daily global solar radiation and compare their efficiency in its application to a region of the Province of Salta, Argentina. Relative sunshine duration, maximum and minimum temperature, rainfall, binary rainfall and extraterrestrial solar radiation data for the period 1996-2002, were used. All data were supplied by Experimental Station Salta, Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina. For both, neural networks models and linear regressions, three alternative combinations of meteorological parameters were considered. Good results with both prediction methods were obtained, with root mean square error (RMSE) values between 1.99 and 1.66 MJ m -2 d -1 for linear regressions and neural networks, and coefficients of correlation (r 2 ) between 0.88 and 0.92, respectively. Even though neural networks and linear regression models can be used to predict the daily global solar radiation appropriately, neural networks produced better estimates.
A B S T R A C TLand cover data represent environmental information for a variety of scientific and policy applications, so its classification from satellite images is important. Since neural networks (NN) do not require a hypothesis about data distribution, they are valuable tools to classify satellite images. The objectives of this work were to develop NN models to classify land cover data from information from satellite images and to evaluate them when different input variables are used. MODIS-MYD13Q1 satellite images and data of 85 plots in Córdoba, Argentina, were used. Five NN models of multi-layer feed-forward perceptron were designed. Four of these received NDVI (Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), red (RED) and near infrared (NIR) reflectance values as input patterns, respectively. The fifth NN had RED and NIR reflectances as input values. By comparing the information taken in the field and the classification made during the validation phase, it can be concluded that all models presented good performance in the classification. The model that shows better performance is the one that jointly considers RED and NIR reflectance as input; this model shows an overall classification accuracy of 93% and an excellent Kappa statistic. The networks constructed with NDVI and EVI values have a similar perfomance (86 and 83% accuracy, respectively). The Kappa statistics correspond to the categories of very good and good, respectively. The networks including only RED or NIR reflectance values get the lowest accuracy results (76 and 81%, respectively) and Kappa values within fair and good ranks, respectively.Keywords: modeling, back-propagation neural networks, remote sensing, crops-bare soil. R E S U M E NLos datos de cobertura de suelo representan información ambiental clave para aplicaciones científicas y políticas, por esto su clasificación a partir de imáge-nes satelitales es importante. Las redes neuronales (NN) constituyen una herramienta valiosa para clasificar imágenes satelitales pues no requieren hipótesis sobre la distribución de los datos. Los objetivos de este trabajo fueron desarrollar modelos de NN para clasificar datos de cobertura de suelo a partir de información proveniente de imágenes satelitales y evaluarlos cuando se utilizan diferentes variables de entrada. Se utilizaron imágenes satelitales MODIS-MYD13Q1 y datos de 85 parcelas en Córdoba Argentina. Se diseñaron cinco NN del tipo perceptrón multicapa feed-forward. Cuatro de ellas recibieron como patrones de entrada valores de NDVI (Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), de reflectancias en la bandas roja (RED) y en infrarroja cercana (NIR), respectivamente. La quinta NN tuvo como valores de entrada las reflectancias RED y NIR. La validación, permitió concluir que todos los modelos presentan un buen desempeño. El modelo que muestra mejor comportamiento es aquel que considera conjuntamente valores de reflectancias RED y NIR, cuya precisión en la clasificación es del 93% con un ...
The ground cover is a necessary parameter for agronomic and environmental applications. In Argentina, soybean (Glycine max (L.) Merill) is the most important crop; therefore it is necessary to determine its amount and configuration. In this work, neural-network (NN) models were developed to calculate soybean percentage ground cover (fractional vegetation cover, fCover) and to compare the accuracy of the estimate from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Landsat satellites data. The NN design included spectral values of the red and near-infrared (NIR) bands as input variables and one neuron output, which expressed the estimated coverage. Data of fCover were acquired throughout the growing season in the central plains of Córdoba (Argentina); they were used for training and validating the networks. The results show that the NNs are an appropriate methodology for estimating the temporal evolution of soybean coverage fraction from MODIS and Landsat images, with coefficients of determination (R 2 ) equal to 0.90 and 0.91, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.