This paper provides a formulation for the additive Holt-Winters forecasting procedure that simplifies both obtaining maximum likelihood estimates of all unknowns, smoothing parameters and initial conditions, and the computation of point forecasts and reliable predictive intervals. The stochastic component of the model is introduced by means of additive, uncorrelated, homoscedastic and Normal errors, and then the joint distribution of the data vector, a multivariate Normal distribution, is obtained.In the case where a data transformation was used to improve the fit of the model, cumulative forecasts are obtained here using a Monte-Carlo approximation. This paper describes the method by applying it to the series of monthly total UK air passengers collected by the Civil Aviation Authority, a long time series from 1949 to the present day, and compares the resulting forecasts with those obtained in previous studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.