Fast and proper treatment of dairy wastewater is necessary before discharging it to the environment. In this study, healthy Azolla filiculoides was used to remove pollutants, including phosphorus (P), sodium (Na), chemical oxygen demand (COD), biological oxygen demand (BOD), and total dissolved solids (TDS) of dairy effluent in batch, continuous system, as well as continuous with the slow stirring system. These systems were handmade. The maximum removal efficiency was related to the P, which obtained 66.25% after 12 h in the batch bioreactor system. The highest removal of 13.69% after 21 h was obtained for Na using continuous with a slow stirring method. The highest removal related to the COD and BOD was 33.53% and 29.93% after 18 h, respectively, in continuous with the slow stirring system. TDS removal was achieved 31.44% after 24 h using the batch system. The results of these three systems were compared with each other using a one‐way analysis of variance (ANOVA). There was no significant difference between them. Azolla filiculoides is an abundant plant in northern nature that a biosystem was used for optimum usage. It can be used as an efficient, inexpensive, and affordable bioadsorbent for dairy wastewater treatment. Practitioner points Live Azolla filiculoides was used to remove pollutants. P, Na, BOD, COD, and TDS were removed from dairy wastewater. Batch, continuous, and continuous with the slow stirring systems were used. Live Azolla was an efficient, inexpensive, and affordable bio‐adsorbent for dairy wastewater treatment.
One of the main sources of environment pollution is the industrial wastewater which contains heavy metals and can be found in many industries. If these heavy metals enter in the human body, would cause many health problems. On the other hand, different researches around the world show that nanotechnology is an effective way to remove pollutants. In this research, for the first time in the world, a type of natural sponge of Persian Gulf that has Nano holes has been used to remove the lead ion selectively from calcium, magnesium and cobalt ions in aqueous solution. The present study identified a sample belonging to the sponge of Demospongiae class. The aggregation of absorption in the sponge, contact time, particle size and by measuring environment`s pH were measured. The results show this type of sponge, GH-92, is able to absorb different amounts of mentioned metal ions. Adsorption amount of calcium, magnesium and cobalt by this type of sponge was very small. The highest adsorption capacity belonged to lead ion in pH= 4.5 to 5 with mesh 230 which was 79.19 mg per gram of adsorbent. This is the highest adsorption capacity of lead comparison with reported articles for selective separation of lead ion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.