In this study, a novel nanobiocomposite was synthesized using graphene oxide, lignin, silk fibroin and ZnO and used in biological fields. To synthesize this structure, after preparing graphene oxide by the Hummer method, lignin, silk fibroin, and ZnO nanoparticles (NPs) were added to it, respectively. Also, ZnO NPs with a particle size of about 18 nm to 33 nm was synthesized via Camellia sinensis extract by green methodology. The synthesized structure was examined as anti-biofilm agent and it was observed that the Graphene oxide-lignin/silk fibroin/ZnO nanobiocomposite has a significant ability to prevent the formation of P. aeruginosa biofilm. In addition, due to the importance of the possibility of using this structure in biological environments, its toxicity and blood compatibility were also evaluated. According to the obtained results from MTT assay, the viability percentages of Hu02 cells treated with Graphene oxide-lignin/silk fibroin/ZnO nanobiocomposite after 24, 48, and 72 h of incubation were 89.96%, 89.32%, and 91.28%. On the other hand, the hemolysis percentage of the synthesized structure after 24 h and 72 h of extraction was 9.5% and 11.76% respectively. As a result, the synthesized structure has a hemolysis percentage below 12% and its toxicity effect on Hu02 cells is below 9%.
In this study, green synthesis of modified Cu(OH) 2 nanowires by Fe 3 O 4 @SiO 2 core–shell nanospheres was easily performed via chemical reduction. In other words, the direct coating of Cu(OH) 2 on Fe 3 O 4 @SiO 2 was successfully realized without the extra complicated procedures. Various concentrations of synthesized nanocomposites were tested on pathogenic and nosocomial bacteria. In this study, the structural information and characterization of Fe 3 O 4 @SiO 2 /Cu(OH) 2 nanowires (FSCNWs) were obtained using FE-SEM, FT-IR, EDX and X-ray diffraction. This nanocomposite can effectively kill important infectious bacteria, including Staphylococcus aureus , Escherichia coli , Staphylococcus saprophyticus , Pseudomonas aeruginosa and Klebsiella pneumoniae . Studies have shown that FSCNW nanocomposites affect common antibiotic-resistant bacteria. This result confirms the function of FSCNW as an effective, beneficial and environmentally friendly antibacterial agent that can used in a wide range of applications in medicine. FSCNWs can be separated conveniently from bacteria-containing solutions using a magnet. Compared with nanocomposites based on other metals such as silver and gold, the use of FSCNWs in water treatment has been recommended because of the precursor of copper for its low price and less toxicity. In addition to its special properties such as mild reaction conditions, green synthesis methods, admissible magnetic properties, easy separation, high antibacterial activity and beneficial efficiency.
In this study, a novel nanobiocomposite was synthesized using graphene oxide, lignin, silk fibroin and ZnO and used in biological fields. To synthesize this structure, after preparing graphene oxide by the Hummer method, lignin, silk fibroin, and ZnO nanoparticles (NPs) were added to it, respectively. Also, ZnO NPs with a particle size of about 18 nm to 33 nm was synthesized via Camellia sinensis extract by green methodology. The synthesized structure was examined as anti-biofilm agent and it was observed that the Graphene oxide-lignin/silk fibroin/ZnO nanobiocomposite has a significant ability to prevent the formation of P. aeruginosa biofilm. In addition, due to the importance of the possibility of using this structure in biological environments, its toxicity and blood compatibility were also evaluated. According to the obtained results from MTT assay, the viability percentages of Hu02 cells treated with Graphene oxide-lignin/silk fibroin/ZnO nanobiocomposite after 24, 48, and 72 h of incubation were 89.96%, 89.32%, and 91.28%. On the other hand, the hemolysis percentage of the synthesized structure after 24 h and 72 h of extraction was 9.5% and 11.76% respectively. As a result, the synthesized structure is hemocompatible and had no toxic effects on Hu02 cells.
Magnetic polyvinyl alcohol-based g-C3N4 composite (MPg-C3N4) was synthesized as a heterogeneous catalyst. It was characterized by various analyses such as FT-IR, XRD, FE-SEM, TGA, EDX, and VSM. For showing the catalytic merits of MPg-C3N4, it was used in the synthesis of acridinedione and 4H-chromene derivatives in a highly efficient yield. Various aldehyde derivatives were used to show the merits of the MPg-C3N4. High yield, short reaction time, easy separation, mild condition reaction, simple purification, non-toxic solvents, and reusability are the advantages of using polymer-based heterogeneous MPg-C3N4 catalyst to synthesize acridinedione and 4H-chromene derivatives. Also, the intended products were purified by simple crystallization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.