<p>Climate projections strongly suggest that the 2022 sweltering summer may be a harbinger of the future European climate. Climate extremes (e.g., droughts and heatwaves) jeopardize terrestrial ecosystem carbon sequestration. The construction of an open digital twin of the soil-plant system helps to monitor and predict the impact of extreme events on ecosystem functioning and could be used to recommend measures and policies to increase the resilience of ecosystems to climate-related challenges. A digital twin refers to a highly interconnected workflow, with a data assimilation framework at its core to combine observations and process-based models, meanwhile accompanied by an interactive and configurable platform that allows users to create and evaluate user-specific scenarios for scientific investigation and decision support. Creating an open digital twin means creating a digital twin following Open Science and FAIR principles, both for data and research software. In this contribution, the STEMMUS-SCOPE model was used as an example to develop an open digital twin of the soil-plant system. We suggest our recently developed open digital twin infrastructure could serve as the backbone for an interoperable framework to facilitate the digitalization of other Earth subsystems (e.g., by simply replacing the soil-plant model). In addition, we show how software not designed initially as open can be adopted to create an open digital twin using containers - standardized computational environments that can be shared, reused and that foster reproducibility.</p>
<p>The revegetation practice is one of the most efficient ways to alleviate soil erosion and desertification. However, the land cover change can considerably disturb ecohydrological processes, particularly in arid and semiarid regions where ecosystems are fragile and suffer intense water stress. This study evaluated the effects of revegetation on the energy, water and carbon fluxes in a desert steppe in Yanchi County, Ningxia Province, Northwest China, by simulating two scenarios of shrubs-grassland and grassland ecosystem with the STEMMUS-SCOPE model. The STEMMUS-SCOPE model integrates canopy photosynthesis, fluorescence, energy balance model and soil water and heat transfer model in the soil-plant-atmosphere continuum system. The model was validated by field observations from May to September of 2016-2019, and showed good performances in simulating the energy, water and carbon fluxes. It indicated that the revegetation facilitated carbon fixation (+69.34%). Latent heat flux was the primary consumer of the available energy and was stronger in the shrubs-grassland ecosystem (+16.76%). With the remarkably increased transpiration of the shrubs-grassland ecosystem (+86.72%), revegetation intensified the soil water losses, especially the soil water content within the 0-200 cm depth (&#8722;18.97%). Moreover, the water consumption of the shrubs-grassland ecosystem tended to exceed the received precipitation over the growing seasons. These results emphasized the necessity of considering the adverse impacts of revegetation in future ecological restoration, especially the irreversible soil water depletion and imbalance of energy, water and carbon cycles.</p>
<p>High-quality and long-term measurements of water, energy, and carbon fluxes between the land and atmosphere are critical for eco-hydrological monitoring and land surface model (LSM) benchmarking. Eddy Covariance has become the most widely used method for theory development and LSM evaluation. On the other hand, flux tower data as measured (even after site post-processing and gap-filling based on empirical formulation) cannot be used directly for validating LSMs, and most of time, lacking physically-consistent measurement across the soil-plant-atmosphere continuum (SPAC) (e.g., other than surface fluxes, lacking the measurement of soil moisture, soil water potential, leaf water potential, fluorescence, and reflectance). Here we present high-quality and long-term fluxes and corresponding above/below-ground hydrological, physiological, photosynthetic data derived from the STEMMUS-SCOPE model simulations for PLUMBER2 project with 170 FLUXNET sites. Fluxes data from PLUMBER2 and SM data from FLUXNET2015 are used to further validate the effectiveness of the STEMMUS-SCOPE dataset. Results show that the simulated fluxes and SM dataset have reasonable agreements with the in-situ measurements, using the available global input/forcing datasets without any model tunning. This dataset adds to the existing ecosystem flux and SM network to help increase our understanding of ecosystem responses to extreme events.</p>
Abstract. Revegetation is one of the most effective ways to combat desertification and soil erosion in semiarid and arid regions. However, the perturbation of ecohydrological processes revegetation remains to be studied, especially its effect on the complex interaction between the hydrological processes and vegetation growth under water stress. This study evaluated the effects of revegetation on the energy, water and carbon fluxes in a desert steppe in Yanchi County, Ningxia Province, Northwest China, by simulating two vegetated scenarios (shrubs-grassland ecosystem and grassland ecosystem) using STEMMUS-SCOPE model. The model was validated by field observations from May to September of 2016–2019. The simulated energy, water and fluxes in 2016 and 2019 were used to evaluate the difference between two vegetated scenarios. Higher leaf area index and root water uptake of C3 shrubs (Caragana Intermedia) resulted in the increased carbon fixation (+ 82 %) and transpiration (+ 99 %) in the shrubs-grassland ecosystem compared to C3 grassland ecosystem. In both scenarios, turbulent energy was dominated by latent heat flux, which was stronger in the shrubs-grassland ecosystem (+ 13 %). With the remarkable increase in transpiration, revegetation induced the soil water losses, especially the soil water content within the 0–200 cm soil depth (- 19 %), and exaggerated the excess of water consumption over the received precipitation. These results emphasize the importance of accounting for energy and water budget in water-limited ecosystems during ecological restoration, to prevent soil water depletion. As an example, the consequence of increased transpiration should be further examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.