We present a new method for coating deposition on micro cutters without an increase in their cutting edges radii caused by the deposition. For this purpose, the cutting edges are sharpened before the coating deposition with a concentrated beam of fast argon atoms. The sharpening decreases the initial radius and, hence, limits its value after the coating deposition. The concentrated beam of fast argon atoms is generated using an immersed in the gas discharge plasma concave grid under a negative high voltage. Ions accelerated from the plasma by the grid pass through the grid holes and are concentrated in the focal point of the grid. As a result of the charge exchange in the space charge sheaths of the grid, they are transformed into fast atoms. A uniform sputtering by the fast atoms of the micro-cutter surface reduces the radius of its cutting edge.
Surface hardening of machine parts substantially improves their performance. The best results are obtained when combined hardening consists of surface nitriding and subsequent deposition of hard coatings. The nitriding of machine parts immersed in the plasma of glow coatings have been studied, and the study results are presented. Titanium atoms for coating synthesis are obtained via titanium evaporation in a hollow molybdenum anode of the discharge. Stable evaporation of titanium occurs only when the power density of electrons heating the liquid titanium does not exceed ~500 W/cm2. To start evaporation, it is only necessary to reduce the gas pressure to 0.02 Pa. To stop evaporation, it is enough to increase the gas pressure to 0.1 Pa. Fast argon and nitrogen atoms used for cleaning the machine parts, heating them, and bombarding the growing coating are obtained using a grid composed of plane-parallel plates under high negative voltage and immersed in plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.